1887

Abstract

The filamentous anoxygenic phototrophic bacterium Oscillochloris trichoides DG-6 has been studied, and it has been shown that there are no lipopolysaccharides on the cell surface. Fatty acids hydroxylated at the C3 position, amino sugars and phosphate-containing compounds characteristic of lipid A have also not been found. The genes encoding for proteins responsible for the synthesis of lipopolysaccharides and the genes for the transport system, usually localized in the outer membrane of Gram-negative bacteria, have not been detected in the genome. The rigid layer of the cell wall contains a peptidoglycan consisting of alanine, glutamine, ornithine and glycine, in the respective ratio 1.8 : 1.5 : 1.0 : 0.6. Thus, the investigated bacterium, Osc. trichoides, is a monoderm. The cell wall also contains a branched α-1,4-d-glucan with a repeating unit consisting of glucose residues linked by α-1→4 bonds (α-1→6 at the branching sites). Such polymers have not previously been reported in phototrophic bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000590
2017-12-08
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/1/57.html?itemId=/content/journal/micro/10.1099/mic.0.000590&mimeType=html&fmt=ahah

References

  1. Gupta RS. What are Archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? a new proposal for the classification of prokaryotic organisms. Mol Microbiol 1998; 29: 695– 707 [CrossRef] [PubMed]
    [Google Scholar]
  2. Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life. Philos Trans R Soc Lond B Biol Sci 2010; 365: 111– 132 [CrossRef] [PubMed]
    [Google Scholar]
  3. Sutcliffe IC. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 2010; 18: 464– 470 [CrossRef] [PubMed]
    [Google Scholar]
  4. Sutcliffe IC. Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol 2011; 13: 279– 282 [CrossRef] [PubMed]
    [Google Scholar]
  5. Gupta RS. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 2011; 100: 171– 182 [CrossRef] [PubMed]
    [Google Scholar]
  6. Woese CR. Bacterial evolution. Microbiol Rev 1987; 51: 221– 271 [PubMed]
    [Google Scholar]
  7. Hanada S, Pierson BK. The family Chloroflexaceae. In Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) Prokaryotes New York: Springer; 2006; pp. 815– 842 [Crossref]
    [Google Scholar]
  8. Hanada S, Takaichi S, Matsuura K, Nakamura K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 2002; 52: 187– 193 [CrossRef] [PubMed]
    [Google Scholar]
  9. Berg IA, Keppen OI, Krasil’nikova EN, Ugol’kova NV, Ivanovskiĭ RN. Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology 2005; 74: 258– 264 [CrossRef]
    [Google Scholar]
  10. Ivanovsky RN, Fal YI, Berg IA, Ugolkova NV, Krasilnikova EN et al. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology 1999; 145: 1743– 1748 [CrossRef] [PubMed]
    [Google Scholar]
  11. Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM. Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 2000; 50: 1529– 1537 [CrossRef] [PubMed]
    [Google Scholar]
  12. Turova TP, Spiridonova EM, Slobodova NV, Bulygina ES, Keppen OI et al. Phylogeny of anoxygenic filamentous phototrophic bacteria of the family Oscillochloridaceae as inferred from comparative analyses of the rrs, cbbL, and nifH genes. Microbiology 2006; 75: 192– 200 [CrossRef] [PubMed]
    [Google Scholar]
  13. Hanada S, Hiraishi A, Shimada K, Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 1995; 45: 676– 681 [CrossRef] [PubMed]
    [Google Scholar]
  14. Pierson BK, Castenholz RW. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 1974; 100: 5– 24 [CrossRef] [PubMed]
    [Google Scholar]
  15. Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ et al. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol 2013; 63: 4675– 4682 [CrossRef] [PubMed]
    [Google Scholar]
  16. Reichenbach H, Golecki JR. The fine structure of herpetosiphon, and a note on the taxonomy of the genus. Arch Microbiol 1975; 102: 281– 291 [CrossRef] [PubMed]
    [Google Scholar]
  17. Jürgens UJ, Meißner J, Fischer U, König WA, Weckesser J. Orinithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 1987; 148: 72– 76 [CrossRef]
    [Google Scholar]
  18. Meissner J, Krauss JH, Jürgens UJ, Weckesser J. Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J Bacteriol 1988; 170: 3213– 3216 [CrossRef] [PubMed]
    [Google Scholar]
  19. Jürgen UJ, Meissner J, Reichenbach H, Weckesser J. l-ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol Lett 1989; 60: 247– 250 [CrossRef]
    [Google Scholar]
  20. Keppen OI, Baulina OI, Kondratieva EN. Oscillochloris trichoides neotype strain DG-6. Photosynth Res 1994; 41: 29– 33 [CrossRef] [PubMed]
    [Google Scholar]
  21. Keppen OI, Baulina OI, Lysenko AM, Kondratieva EN. New green bacterium belonging to family Chloroflexaceae. Mcrobiology 1993; 62: 267– 276
    [Google Scholar]
  22. Doetsch RN. Determinative methods of light microscopy. In Gerhardt RGEM P, Costilow RN, Nester EW, Wood WA, Krieg NR et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp. 21– 33
    [Google Scholar]
  23. Westphal Oj K. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 1965; 5: 83– 91
    [Google Scholar]
  24. Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA et al. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 1997; 47: 144– 149 [CrossRef] [PubMed]
    [Google Scholar]
  25. Potekhina NV, Streshinskaya GM, Tul’skaya EM, Shashkov AS. Cell wall teichoic acids in the taxonomy and characterization of Gram-positive bacteria. In Methods in Microbiology Amsterdam: Academic Press, Elsevier; 2011; pp. 132– 164
    [Google Scholar]
  26. Amano K, Williams JC. Sensitivity of Coxiella burnetii peptidoglycan to lysozyme hydrolysis and correlation of sacculus rigidity with peptidoglycan-associated proteins. J Bacteriol 1984; 160: 989– 993 [PubMed]
    [Google Scholar]
  27. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013; 41: D36– D42 [CrossRef] [PubMed]
    [Google Scholar]
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42: D206– D214 [CrossRef] [PubMed]
    [Google Scholar]
  29. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014; 42: D560– D567 [CrossRef] [PubMed]
    [Google Scholar]
  30. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44: D279– D285 [CrossRef] [PubMed]
    [Google Scholar]
  31. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  34. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999; 41: 95– 98
    [Google Scholar]
  35. Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry 2010; 75: 383– 404 [CrossRef] [PubMed]
    [Google Scholar]
  36. Raetz CR, Guan Z, Ingram BO, Six DA, Song F et al. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res 2009; 50: S103– S108 [CrossRef] [PubMed]
    [Google Scholar]
  37. Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevåg R. Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 1982; 132: 149– 154 [CrossRef]
    [Google Scholar]
  38. Desvaux M, Hébraud M, Talon R, Henderson IR. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 2009; 17: 139– 145 [CrossRef] [PubMed]
    [Google Scholar]
  39. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008; 32: 149– 167 [CrossRef] [PubMed]
    [Google Scholar]
  40. Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. Isme J 2012; 6: 2245– 2256 [CrossRef] [PubMed]
    [Google Scholar]
  41. Quintela JC, Pittenauer E, Allmaier G, Arán V, de Pedro MA. Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol 1995; 177: 4947– 4962 [CrossRef] [PubMed]
    [Google Scholar]
  42. Yanagihara Y, Kamisango K, Yasuda S, Kobayashi S, Mifuchi I et al. Chemical compositions of cell walls and polysaccharide fractions of spirochetes. Microbiol Immunol 1984; 28: 535– 544 [CrossRef] [PubMed]
    [Google Scholar]
  43. Kuznetsov BB, Ivanovsky RN, Keppen OI, Sukhacheva MV, Bumazhkin BK et al. Draft genome sequence of the anoxygenic filamentous phototrophic bacterium Oscillochloris trichoides subsp. DG-6. J Bacteriol 2011; 193: 321– 322 [CrossRef] [PubMed]
    [Google Scholar]
  44. Jansson PE, Kenne L, Widmalm G. Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-n.m.r. data. Carbohydr Res 1989; 188: 169– 191 [CrossRef] [PubMed]
    [Google Scholar]
  45. Preiss J. Bacterial glycogen inclusions: enzymology and regulation of synthesis. In Shively JM. (editor) Inclusions in Prokaryotes Berlin, Heidelberg: Springer; 2006; pp. 71– 108 [Crossref]
    [Google Scholar]
  46. Daffé M, Lanée MA. Analysis of the capsule of Mycobacterium tuberculosis. Methods Mol Med 2001; 54: 217– 227 [CrossRef] [PubMed]
    [Google Scholar]
  47. Koliwer-Brandl H, Syson K, van de Weerd R, Chandra G, Appelmelk B et al. Metabolic network for the biosynthesis of intra- and extracellular α-glucans required for virulence of Mycobacterium tuberculosis. 2016;12 e1005768
  48. Grouzdev DS, Kuznetsov BB, Keppen OI, Krasil'nikova EN, Lebedeva NV et al. Reconstruction of bacteriochlorophyll biosynthesis pathways in the filamentous anoxygenic phototrophic bacterium Oscillochloris trichoides DG-6 and evolution of anoxygenic phototrophs of the order Chloroflexales. Microbiology 2015; 161: 120– 130 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000590
Loading
/content/journal/micro/10.1099/mic.0.000590
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error