1887

Abstract

Fluconazole (FLC) is a well-known fungistatic agent that inhibits ergosterol biosynthesis. We showed that FLC exhibits dose-dependent fungicidal activity, and investigated the fungicidal mechanism of FLC on . To confirm the relationship between fungicidal activity and the inhibition of ergosterol, we assessed membrane dysfunctions via propidium iodide influx and potassium leakage, as well as morphological change. Interestingly, while membrane disruption was not observed at all tested concentrations of FLC, potassium efflux and cell shrinkage were observed at high dosages of FLC (HDF). Low-dosage FLC (LDF) treatment did not induce significant changes. Next, we examined whether the fungicidal activity of FLC was associated with apoptosis in . FLC caused dose-dependent apoptotic responses, including phosphatidylserine externalization and DNA fragmentation. It was also involved in glutathione depletion followed by oxidative damage. In particular, unlike LDF, HDF leads to the disruption of mitochondrial homeostasis, including mitochondrial membrane depolarization and accumulation of calcium and reactive oxygen species. HDF-induced mitochondrial dysfunction promoted the release of cytochrome from mitochondria to the cytosol, and activated intracellular metacaspase. In conclusion, the dose-dependent fungicidal activity of FLC was due to an apoptotic response in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000589
2018-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/2/194.html?itemId=/content/journal/micro/10.1099/mic.0.000589&mimeType=html&fmt=ahah

References

  1. Naglik JR, Richardson JP, Moyes DL. Candida albicans pathogenicity and epithelial immunity. PLoS Pathog 2014; 10:e1004257 [View Article][PubMed]
    [Google Scholar]
  2. Vasicek EM, Berkow EL, Bruno VM, Mitchell AP, Wiederhold NP et al. Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole. Antimicrob Agents Chemother 2014; 58:6807–6818 [View Article][PubMed]
    [Google Scholar]
  3. Vila T, Ishida K, Seabra SH, Rozental S. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells. Int J Antimicrob Agents 2016; 48:512–520 [View Article][PubMed]
    [Google Scholar]
  4. Xu N, Dong YJ, Yu QL, Zhang B, Zhang M et al. Convergent regulation of Candida albicans Aft2 and Czf1 in invasive and opaque filamentation. J Cell Biochem 2015; 116:1908–1918 [View Article][PubMed]
    [Google Scholar]
  5. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013; 4:119–128 [View Article][PubMed]
    [Google Scholar]
  6. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 2016; 7:2173 [View Article][PubMed]
    [Google Scholar]
  7. Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 2002; 46:3113–3117 [View Article][PubMed]
    [Google Scholar]
  8. Iguchi K, Usui S, Ishida R, Hirano K. Imidazole-induced cell death, associated with intracellular acidification, caspase-3 activation, DFF-45 cleavage, but not oligonucleosomal DNA fragmentation. Apoptosis 2002; 7:519–525 [View Article][PubMed]
    [Google Scholar]
  9. Katragkou A, Alexander EL, Eoh H, Raheem SK, Roilides E et al. Effects of fluconazole on the metabolomic profile of Candida albicans. J Antimicrob Chemother 2016; 71:635–640 [View Article][PubMed]
    [Google Scholar]
  10. Klepser ME, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother 1998; 42:1207–1212[PubMed]
    [Google Scholar]
  11. Hwang B, Hwang JS, Lee J, Lee DG. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochem Biophys Res Commun 2010; 400:352–357 [View Article][PubMed]
    [Google Scholar]
  12. Orlov DS, Nguyen T, Lehrer RI. Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 2002; 49:325–328 [View Article][PubMed]
    [Google Scholar]
  13. Yun J, Lee DG. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans. Biochim Biophys Acta 2017; 1861:585–592 [View Article][PubMed]
    [Google Scholar]
  14. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T et al. Apoptosis in yeast. Curr Opin Microbiol 2004; 7:655–660 [View Article][PubMed]
    [Google Scholar]
  15. Tian J, Lu Z, Wang Y, Zhang M, Wang X et al. Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int J Biochem Cell Biol 2017; 85:114–122 [View Article][PubMed]
    [Google Scholar]
  16. Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 2004; 286:L49–L67 [View Article][PubMed]
    [Google Scholar]
  17. Lee H, Woo ER, Lee DG. (-)-Nortrachelogenin from Partrinia scabiosaefolia elicits an apoptotic response in Candida albicans. FEMS Yeast Res 2016; 16:fow013 [View Article][PubMed]
    [Google Scholar]
  18. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 2011; 51:1872–1881 [View Article][PubMed]
    [Google Scholar]
  19. Rastogi RP, Singh SP, Häder DP, Sinha RP. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 2010; 397:603–607 [View Article][PubMed]
    [Google Scholar]
  20. Bankapalli K, Saladi S, Awadia SS, Goswami AV, Samaddar M et al. Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J Biol Chem 2015; 290:26491–26507 [View Article][PubMed]
    [Google Scholar]
  21. Aubron C, Glodt J, Matar C, Huet O, Borderie D et al. Variation in endogenous oxidative stress in Escherichia coli natural isolates during growth in urine. BMC Microbiol 2012; 12:120 [View Article][PubMed]
    [Google Scholar]
  22. Sowa-Jasiłek A, Zdybicka-Barabas A, Stączek S, Wydrych J, Skrzypiec K et al. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells. Microbiol Res 2016; 193:121–131 [View Article][PubMed]
    [Google Scholar]
  23. Li XM, Luo XG, Wang N, Zhou H, Si CL et al. The extract of Hypericum ascyron L. induces bacterial cell death through apoptosis pathway. J Ethnopharmacol 2015; 166:205–210 [View Article][PubMed]
    [Google Scholar]
  24. Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 2007; 462:176–188 [View Article][PubMed]
    [Google Scholar]
  25. Singh B, Guru SK, Sharma R, Bharate SS, Khan IA et al. Synthesis and anti-proliferative activities of new derivatives of embelin. Bioorg Med Chem Lett 2014; 24:4865–4870 [View Article][PubMed]
    [Google Scholar]
  26. Studencka M, Schaber J. Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017; 8:30656–30671 [View Article][PubMed]
    [Google Scholar]
  27. Carraro M, Bernardi P. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium 2016; 60:102–107 [View Article][PubMed]
    [Google Scholar]
  28. Peña A, Sánchez NS, Calahorra M. Estimation of the electric plasma membrane potential difference in yeast with fluorescent dyes: comparative study of methods. J Bioenerg Biomembr 2010; 42:419–432 [View Article][PubMed]
    [Google Scholar]
  29. Circu ML, Aw TY. Glutathione and apoptosis. Free Radic Res 2008; 42:689–706 [View Article][PubMed]
    [Google Scholar]
  30. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38:713–721 [View Article][PubMed]
    [Google Scholar]
  31. Perrone GG, Tan SX, Dawes IW. Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 2008; 1783:1354–1368 [View Article][PubMed]
    [Google Scholar]
  32. Li Y, Wei G, Chen J. Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 2004; 66:233–242 [View Article][PubMed]
    [Google Scholar]
  33. Yun DG, Lee DG. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. Int J Biochem Cell Biol 2016; 80:1–9 [View Article][PubMed]
    [Google Scholar]
  34. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999; 424:83–95 [View Article][PubMed]
    [Google Scholar]
  35. Lee JH, Park JW. Role of thioredoxin peroxidase in aging of stationary cultures of Saccharomyces cerevisiae. Free Radic Res 2004; 38:225–231 [View Article][PubMed]
    [Google Scholar]
  36. Hwang JH, Hwang IS, Liu QH, Woo ER, Lee DG. (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 2012; 94:1784–1793 [View Article][PubMed]
    [Google Scholar]
  37. Schüll S, Günther SD, Brodesser S, Seeger JM, Tosetti B et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis 2015; 6:e1691 [View Article][PubMed]
    [Google Scholar]
  38. Belenky P, Camacho D, Collins JJ. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep 2013; 3:350–358 [View Article][PubMed]
    [Google Scholar]
  39. Munayyer HK, Mann PA, Chau AS, Yarosh-Tomaine T, Greene JR et al. Posaconazole is a potent inhibitor of sterol 14α-demethylation in yeasts and molds. Antimicrob Agents Chemother 2004; 48:3690–3696 [View Article][PubMed]
    [Google Scholar]
  40. Mahl CD, Behling CS, Hackenhaar FS, de Carvalho E Silva MN, Putti J et al. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage. Diagn Microbiol Infect Dis 2015; 82:203–208 [View Article][PubMed]
    [Google Scholar]
  41. Mora-Navarro C, Caraballo-León J, Torres-Lugo M, Ortiz-Bermúdez P. Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida albicans. J Pept Sci 2015; 21:853–861 [View Article][PubMed]
    [Google Scholar]
  42. Benhamou RI, Bibi M, Steinbuch KB, Engel H, Levin M et al. Real-time imaging of the azole class of antifungal drugs in live Candida cells. ACS Chem Biol 2017; 12:1769–1777 [View Article][PubMed]
    [Google Scholar]
  43. Choi H, Cho J, Jin Q, Woo ER, Lee DG. Antifungal property of dihydrodehydrodiconiferyl alcohol 9'-O-β-d-glucoside and its pore-forming action in plasma membrane of Candida albicans. Biochim Biophys Acta 2012; 1818:1648–1655 [View Article][PubMed]
    [Google Scholar]
  44. Trimarchi JR, Liu L, Smith PJ, Keefe DL. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol Cell Physiol 2002; 282:C588–C594 [View Article][PubMed]
    [Google Scholar]
  45. Jablonski EM, Webb AN, Mcconnell NA, Riley MC, Hughes FM. Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 2004; 286:975C–985 [View Article][PubMed]
    [Google Scholar]
  46. Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. Fungicidal activity of miconazole against Candida spp. biofilms. J Antimicrob Chemother 2010; 65:694–700 [View Article][PubMed]
    [Google Scholar]
  47. Bink A, Govaert G, François IE, Pellens K, Meerpoel L et al. A fungicidal piperazine-1-carboxamidine induces mitochondrial fission-dependent apoptosis in yeast. FEMS Yeast Res 2010; 10:812–818 [View Article][PubMed]
    [Google Scholar]
  48. Scariot FJ, Jahn LM, Maianti JP, Delamare AP, Echeverrigaray S. The fungicide Mancozeb induces metacaspase-dependent apoptotic cell death in Saccharomyces cerevisiae BY4741. Apoptosis 2016; 21:866–872 [View Article][PubMed]
    [Google Scholar]
  49. Tian H, Qu S, Wang Y, Lu Z, Zhang M et al. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans. Appl Microbiol Biotechnol 2017; 101:3335–3345 [View Article][PubMed]
    [Google Scholar]
  50. Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. Biochim Biophys Acta 2015; 1848:2532–2546 [View Article][PubMed]
    [Google Scholar]
  51. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4:552–565 [View Article][PubMed]
    [Google Scholar]
  52. Jurma OP, Hom DG, Andersen JK. Decreased glutathione results in calcium-mediated cell death in PC12. Free Radic Biol Med 1997; 23:1055–1066 [View Article][PubMed]
    [Google Scholar]
  53. Ingram PR, Pitt AR, Wilson CG, Olejnik O, Spickett CM. A comparison of the effects of ocular preservatives on mammalian and microbial ATP and glutathione levels. Free Radic Res 2004; 38:739–750 [View Article][PubMed]
    [Google Scholar]
  54. Ajiboye TO, Naibi AM, Abdulazeez IO, Alege IO, Mohammed AO et al. Involvement of oxidative stress in bactericidal activity of 2-(2-nitrovinyl) furan against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Microb Pathog 2016; 91:107–114 [View Article][PubMed]
    [Google Scholar]
  55. Gurer-Orhan H, Sabir HU, Ozgüneş H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 2004; 195:147–154 [View Article][PubMed]
    [Google Scholar]
  56. Choi HY, Lee JH, Jegal KH, Cho IJ, Kim YW et al. Oxyresveratrol abrogates oxidative stress by activating ERK-Nrf2 pathway in the liver. Chem Biol Interact 2016; 245:110–121 [View Article][PubMed]
    [Google Scholar]
  57. Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life 2016; 68:652–662 [View Article][PubMed]
    [Google Scholar]
  58. Patel A, Mishra S, Ghosh PK. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian J Biochem Biophys 2006; 43:25–31[PubMed]
    [Google Scholar]
  59. Eisenberg T, Büttner S, Kroemer G, Madeo F. The mitochondrial pathway in yeast apoptosis. Apoptosis 2007; 12:1011–1023 [View Article][PubMed]
    [Google Scholar]
  60. Kang K, Fong WP, Tsang PW. Novel antifungal activity of purpurin against Candida species in vitro. Med Mycol 2010; 48:904–911 [View Article][PubMed]
    [Google Scholar]
  61. Lee H, Lee DG. Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death. Biochimie 2017; 133:80–86 [View Article][PubMed]
    [Google Scholar]
  62. Khan A, Ahmad A, Khan LA, Manzoor N. Ocimum sanctum (L.) essential oil and its lead molecules induce apoptosis in Candida albicans. Res Microbiol 2014; 165:411–419 [View Article][PubMed]
    [Google Scholar]
  63. Arrington DD, van Vleet TR, Schnellmann RG. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 2006; 291:C1159–C1171 [View Article][PubMed]
    [Google Scholar]
  64. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443:787–795 [View Article][PubMed]
    [Google Scholar]
  65. Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 2007; 66:571–582 [View Article][PubMed]
    [Google Scholar]
  66. Hao B, Cheng S, Clancy CJ, Nguyen MH. Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob Agents Chemother 2013; 57:326–332 [View Article][PubMed]
    [Google Scholar]
  67. Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J et al. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 2009; 53:2392–2401 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000589
Loading
/content/journal/micro/10.1099/mic.0.000589
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error