1887

Abstract

A molecular approach was applied to the study of the carotenoid biosynthetic pathway of . At first, functional annotation of the genome of C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000588
2018-01-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/1/78.html?itemId=/content/journal/micro/10.1099/mic.0.000588&mimeType=html&fmt=ahah

References

  1. Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD et al. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 2015;81:149–189 [CrossRef][PubMed]
    [Google Scholar]
  2. Irazusta V, de Figueroa LIC. Copper resistance and oxidative stress response in Rhodotorula mucilaginosa RCL-11 yeast isolated from contaminated environments in Tucumán, Argentina. In Alvarez A, Polti MA. (editors) Bioremediation in Latin America: Current Research and Perspectives Heidelberg: Springer; 2014; pp.241–254
    [Google Scholar]
  3. Castoria R, Morena V, Caputo L, Panfili G, de Curtis F et al. Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 2005;95:1271–1278 [CrossRef][PubMed]
    [Google Scholar]
  4. Castoria R, Mannina L, Durán-Patrón R, Maffei F, Sobolev AP et al. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J Agric Food Chem 2011;59:11571–11578 [CrossRef][PubMed]
    [Google Scholar]
  5. Ianiri G, Idnurm A, Wright SA, Durán-Patrón R, Mannina L et al. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 2013;79:3101–3115 [CrossRef][PubMed]
    [Google Scholar]
  6. Castoria R, Caputo L, de Curtis F, de Cicco V. Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 2003;93:564–572 [CrossRef][PubMed]
    [Google Scholar]
  7. Rubio MC, Runco R, Navarro AR. Invertase from a strain of Rhodotorula glutinis. Phytochemistry 2002;61:605–609 [CrossRef][PubMed]
    [Google Scholar]
  8. Li M, Liu G-L, Chi Z, Chi Z-M. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass and Bioenergy 2010;34:101–107 [CrossRef]
    [Google Scholar]
  9. Johnson EA. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes. Appl Microbiol Biotechnol 2013;97:7563–7577 [CrossRef][PubMed]
    [Google Scholar]
  10. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 2014;13:12 [CrossRef][PubMed]
    [Google Scholar]
  11. Salvadori MR, Ando RA, Oller do Nascimento CA, Corrêa B. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 2014;9:e87968 [CrossRef][PubMed]
    [Google Scholar]
  12. Kawahara H, Hirai A, Minabe T, Obata H. Stabilization of astaxanthin by a novel biosurfactant produced by Rhodotorula mucilaginosa KUGPP-1. Biocontrol Sci 2013;18:21–28 [CrossRef][PubMed]
    [Google Scholar]
  13. Singh P, Tsuji M, Singh SM, Roy U, Hoshino T. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Cryobiology 2013;66:167–175 [CrossRef][PubMed]
    [Google Scholar]
  14. Aksu Z, Eren AT. Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem 2005;40:2985–2991 [CrossRef]
    [Google Scholar]
  15. Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP. Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chem 2008;107:145–150 [CrossRef]
    [Google Scholar]
  16. Cutzu R, Clemente A, Reis A, Nobre B, Mannazzu I et al. Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry. J Ind Microbiol Biotechnol 2013;40:865–875 [CrossRef][PubMed]
    [Google Scholar]
  17. Squina FM, Mercadante AZ. Influence of nicotine and diphenylamine on the carotenoid composition of rhodotorula strains. J Food Biochem 2005;29:638–652 [CrossRef]
    [Google Scholar]
  18. Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 1999;262:453–461 [CrossRef][PubMed]
    [Google Scholar]
  19. Verdoes JC, Misawa N, van Ooyen AJ. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng 1999;63:750–755 [CrossRef][PubMed]
    [Google Scholar]
  20. Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K et al. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Genet Genomics 2006;275:148–158 [CrossRef][PubMed]
    [Google Scholar]
  21. Niklitschek M, Alcaíno J, Barahona S, Sepúlveda D, Lozano C et al. Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous. Biol Res 2008;41:93–108 [CrossRef][PubMed]
    [Google Scholar]
  22. Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcaíno J et al. "Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous". BMC Microbiol 2011;11:190 [CrossRef][PubMed]
    [Google Scholar]
  23. Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 2015;16:289 [CrossRef][PubMed]
    [Google Scholar]
  24. Deligios M, Fraumene C, Abbondio M, Mannazzu I, Tanca A et al. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc 2015;3:e00201-15 [CrossRef][PubMed]
    [Google Scholar]
  25. Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 2015;31:1665–1673 [CrossRef][PubMed]
    [Google Scholar]
  26. Ianiri G, Wright SA, Castoria R, Idnurm A. Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 2011;48:685–695 [CrossRef][PubMed]
    [Google Scholar]
  27. Abbott EP, Ianiri G, Castoria R, Idnurm A. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 2013;97:283–295 [CrossRef][PubMed]
    [Google Scholar]
  28. Gassel S, Breitenbach J, Sandmann G. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 2014;98:345–350 [CrossRef][PubMed]
    [Google Scholar]
  29. Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 2014;14:547–555 [CrossRef][PubMed]
    [Google Scholar]
  30. Addis MF, Tanca A, Landolfo S, Abbondio M, Cutzu R et al. Proteomic analysis of Rhodotorula mucilaginosa: dealing with the issues of a non-conventional yeast. Yeast 2016;33:433–449 [CrossRef][PubMed]
    [Google Scholar]
  31. Taccari M, Canonico L, Comitini F, Mannazzu I, Ciani M. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour Technol 2012;110:488–495 [CrossRef][PubMed]
    [Google Scholar]
  32. Cutzu R, Coi A, Rosso F, Bardi L, Ciani M et al. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 2013;29:1009–1017 [CrossRef][PubMed]
    [Google Scholar]
  33. Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012;7:e30619 [CrossRef][PubMed]
    [Google Scholar]
  34. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  35. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003;19:ii215–ii225 [CrossRef][PubMed]
    [Google Scholar]
  36. Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 2008;18:1979–1990 [CrossRef][PubMed]
    [Google Scholar]
  37. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 2011;12:491 [CrossRef][PubMed]
    [Google Scholar]
  38. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658–1659 [CrossRef][PubMed]
    [Google Scholar]
  39. Korf I. Gene finding in novel genomes. BMC Bioinformatics 2004;5:59 [CrossRef][PubMed]
    [Google Scholar]
  40. Campbell MS, Holt C, Moore B, Yandell M. Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinformatics 2014;48:4.11.1–4.11.4 [CrossRef][PubMed]
    [Google Scholar]
  41. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–3676 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhu Z, Zhang S, Liu H, Shen H, Lin X et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 2012;3:1112 [CrossRef][PubMed]
    [Google Scholar]
  43. Paul D, Magbanua Z, Arick M, French T, Bridges SM et al. Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc 2014;2:e00046-14 [CrossRef][PubMed]
    [Google Scholar]
  44. Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z et al. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 2015;6:978 [CrossRef][PubMed]
    [Google Scholar]
  45. Goordial J, Raymond-Bouchard I, Riley R, Ronholm J, Shapiro N et al. Improved high-quality draft genome sequence of the eurypsychrophile Rhodotorula sp. JG1b, isolated from permafrost in the hyperarid upper-elevation McMurdo dry valleys, Antarctica. Genome Announc 2016;4:e00069-16 [CrossRef][PubMed]
    [Google Scholar]
  46. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000;16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  47. Domíguez-Bocanegra AR, Torres-Muñoz JA. Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milk as sole source of energy. Appl Microbiol Biotechnol 2004;66:249–252 [CrossRef][PubMed]
    [Google Scholar]
  48. Frengova G, Simova E, Pavlova K, Beshkova D, Grigorova D. Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate. Biotechnol Bioeng 1994;44:888–894 [CrossRef][PubMed]
    [Google Scholar]
  49. Yuan JS, Wang D, Stewart CN. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J 2008;3:112–123 [CrossRef][PubMed]
    [Google Scholar]
  50. Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A et al. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res 2011;11:252–262 [CrossRef][PubMed]
    [Google Scholar]
  51. Ruiz-Albert J, Cerdá-Olmedo E, Corrochano LM. Genes for mevalonate biosynthesis in Phycomyces. Mol Genet Genomics 2002;266:768–777 [CrossRef][PubMed]
    [Google Scholar]
  52. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425–430 [CrossRef][PubMed]
    [Google Scholar]
  53. Wang GY, Keasling JD. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 2002;4:193–201 [CrossRef][PubMed]
    [Google Scholar]
  54. Sun Y, Sun L, Shang F, Yan G. Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem 2016;51:568–577 [CrossRef]
    [Google Scholar]
  55. Sandmann G. High level expression of carotenogenic genes for enzyme purification and biochemical characterization. Pure and Applied Chemistry 1997;69:2163–2168 [CrossRef]
    [Google Scholar]
  56. Harrison PJ, Bugg TD. Enzymology of the carotenoid cleavage dioxygenases: reaction mechanisms, inhibition and biochemical roles. Arch Biochem Biophys 2014;544:105–111 [CrossRef][PubMed]
    [Google Scholar]
  57. Amengual J, Lobo GP, Golczak M, Li HN, Klimova T et al. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. Faseb J 2011;25:948–959 [CrossRef][PubMed]
    [Google Scholar]
  58. Lee J, Koo N, Min DB. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 2004;3:21–33 [CrossRef]
    [Google Scholar]
  59. Ukibe K, Hashida K, Yoshida N, Takagi H. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 2009;75:7205–7211 [CrossRef][PubMed]
    [Google Scholar]
  60. Barbachano-Torres A, Castelblanco-Matiz LM, Ramos-Valdivia AC, Cerda-García-Rojas CM, Salgado LM et al. Analysis of proteomic changes in colored mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Arch Microbiol 2014;196:411–421 [CrossRef][PubMed]
    [Google Scholar]
  61. Gruszecki WI, Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 2005;1740:108–115 [CrossRef][PubMed]
    [Google Scholar]
  62. Lobo GP, Amengual J, Palczewski G, Babino D, von Lintig J. Carotenoid-oxygenases: key players for carotenoid function and homeostasis in mammalian biology. Biochim Biophys Acta 2012;1821:78–87
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000588
Loading
/content/journal/micro/10.1099/mic.0.000588
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error