1887

Abstract

The Staphylococcus aureus type VII protein secretion system (T7SS) plays important roles in virulence and intra-species competition. Here we show that the T7SS in strain RN6390 is activated by supplementing the growth medium with haemoglobin, and its cofactor haemin (haem B). Transcript analysis and secretion assays suggest that activation by haemin occurs at a transcriptional and a post-translational level. Loss of T7 secretion activity by deletion of essC results in upregulation of genes required for iron acquisition. Taken together these findings suggest that the T7SS plays a role in iron homeostasis in at least some S. aureus strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000579
2017-11-24
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1839.html?itemId=/content/journal/micro/10.1099/mic.0.000579&mimeType=html&fmt=ahah

References

  1. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015; 13: 343– 359 [CrossRef] [PubMed]
    [Google Scholar]
  2. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 2003; 100: 12420– 12425 [CrossRef] [PubMed]
    [Google Scholar]
  3. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 2003; 9: 533– 539 [CrossRef] [PubMed]
    [Google Scholar]
  4. Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 2003; 100: 13001– 13006 [CrossRef] [PubMed]
    [Google Scholar]
  5. Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 2016; 14: 677– 691 [CrossRef] [PubMed]
    [Google Scholar]
  6. Ates LS, Houben EN, Bitter W. Type VII secretion: a highly versatile secretion system. Microbiol Spectr 2016; 4: doi: 10.1128/microbiolspec.VMBF-0011-2015 [CrossRef] [PubMed]
    [Google Scholar]
  7. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 2006; 62: 667– 679 [CrossRef] [PubMed]
    [Google Scholar]
  8. Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY et al. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 2009; 106: 18792– 18797 [CrossRef] [PubMed]
    [Google Scholar]
  9. Serafini A, Boldrin F, Palù G, Manganelli R. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 2009; 191: 6340– 6344 [CrossRef] [PubMed]
    [Google Scholar]
  10. Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilchèze C et al. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci USA 2016; 113: E348 E357 [CrossRef] [PubMed]
    [Google Scholar]
  11. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E et al. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 2008; 4: e33 [CrossRef] [PubMed]
    [Google Scholar]
  12. Abramovitch RB, Rohde KH, Hsu FF, Russell DG. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol 2011; 80: 678– 694 [CrossRef] [PubMed]
    [Google Scholar]
  13. Elliott SR, Tischler AD. Phosphate starvation: a novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol Microbiol 2016; 100: 510– 526 [CrossRef] [PubMed]
    [Google Scholar]
  14. Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I. ideR, an essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 2002; 70: 3371– 3381 [CrossRef] [PubMed]
    [Google Scholar]
  15. Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R et al. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 2007; 189: 730– 740 [CrossRef] [PubMed]
    [Google Scholar]
  16. Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The Enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 2017; 25: 192– 204 [CrossRef] [PubMed]
    [Google Scholar]
  17. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J et al. Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 2007; 5: 883– 891 [CrossRef] [PubMed]
    [Google Scholar]
  18. Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A et al. Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 2015; 161: 501– 512 [CrossRef] [PubMed]
    [Google Scholar]
  19. Zoltner M, Ng WM, Money JJ, Fyfe PK, Kneuper H et al. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem J 2016; 473: 1941– 1952 [CrossRef] [PubMed]
    [Google Scholar]
  20. Renshaw PS, Panagiotidou P, Whelan A, Gordon SV, Hewinson RG et al. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 2002; 277: 21598– 21603 [CrossRef] [PubMed]
    [Google Scholar]
  21. Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 2006; 313: 1632– 1636 [CrossRef] [PubMed]
    [Google Scholar]
  22. Sysoeva TA, Zepeda-Rivera MA, Huppert LA, Burton BM. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proc Natl Acad Sci USA 2014; 111: 7653– 7658 [CrossRef] [PubMed]
    [Google Scholar]
  23. Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci USA 2005; 102: 1169– 1174 [CrossRef] [PubMed]
    [Google Scholar]
  24. Burts ML, DeDent AC, Missiakas DM. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 2008; 69: 736– 746 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jäger F et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 2014; 93: 928– 943 [CrossRef] [PubMed]
    [Google Scholar]
  26. Schulthess B, Bloes DA, Berger-Bächi B. Opposing roles of σB and σB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus. BMC Microbiol 2012; 12: 17 [CrossRef] [PubMed]
    [Google Scholar]
  27. Anderson M, Aly KA, Chen YH, Missiakas D. Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol Microbiol 2013; 90: 734– 743 [CrossRef] [PubMed]
    [Google Scholar]
  28. Wang Y, Hu M, Liu Q, Qin J, Dai Y et al. Role of the ESAT-6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398. Sci Rep 2016; 6: 25163 [CrossRef] [PubMed]
    [Google Scholar]
  29. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2016; 2: 16183 [CrossRef] [PubMed]
    [Google Scholar]
  30. Windmüller N, Witten A, Block D, Bunk B, Spröer C et al. Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient. Int J Med Microbiol 2015; 305: 38– 46 [CrossRef] [PubMed]
    [Google Scholar]
  31. Ishii K, Adachi T, Yasukawa J, Suzuki Y, Hamamoto H et al. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant. Infect Immun 2014; 82: 1500– 1510 [CrossRef] [PubMed]
    [Google Scholar]
  32. Jäger F, Zoltner M, Kneuper H, Hunter WN, Palmer T. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus. FEBS Lett 2016; 590: 349– 357 [CrossRef] [PubMed]
    [Google Scholar]
  33. Torres VJ, Pishchany G, Humayun M, Schneewind O, Skaar EP. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J Bacteriol 2006; 188: 8421– 8429 [CrossRef] [PubMed]
    [Google Scholar]
  34. Zoltner M, Fyfe PK, Palmer T, Hunter WN. Characterization of Staphylococcus aureus EssB, an integral membrane component of the Type VII secretion system: atomic resolution crystal structure of the cytoplasmic segment. Biochem J 2013; 449: 469– 477 [CrossRef] [PubMed]
    [Google Scholar]
  35. Miller M, Donat S, Rakette S, Stehle T, Kouwen TR et al. Staphylococcal PknB as the first prokaryotic representative of the proline-directed kinases. PLoS One 2010; 5: e9057 [CrossRef] [PubMed]
    [Google Scholar]
  36. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis Nature Meth. 2012;9 671– 675
  37. Warne B, Harkins CP, Harris SR, Vatsiou A, Stanley-Wall N et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics 2016; 17: 222 [CrossRef] [PubMed]
    [Google Scholar]
  38. Magoc T, Wood D, Salzberg SL. EDGE-pro: estimated degree of gene expression in prokaryotic genomes. Evol Bioinform Online 2013; 9: 127– 136 [CrossRef] [PubMed]
    [Google Scholar]
  39. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550 [CrossRef] [PubMed]
    [Google Scholar]
  40. Frank KL, del Pozo JL, Patel R. From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 2008; 21: 111– 133 [CrossRef] [PubMed]
    [Google Scholar]
  41. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139– 140 [CrossRef] [PubMed]
    [Google Scholar]
  42. Corrigan RM, Foster TJ. An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid 2009; 61: 126– 129 [CrossRef] [PubMed]
    [Google Scholar]
  43. Parsot C, Ménard R, Gounon P, Sansonetti PJ. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 1995; 16: 291– 300 [CrossRef] [PubMed]
    [Google Scholar]
  44. Heesemann J, Gross U, Schmidt N, Laufs R. Immunochemical analysis of plasmid-encoded proteins released by enteropathogenic Yersinia sp. grown in calcium-deficient media. Infect Immun 1986; 54: 561– 567 [PubMed]
    [Google Scholar]
  45. Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 2007; 9: 797– 803 [CrossRef] [PubMed]
    [Google Scholar]
  46. Critchley IA, Basker MJ. Conventional laboratory agar media provide an iron-limited environment for bacterial growth. FEMS Microbiol Lett 1988; 50: 35– 39 [CrossRef]
    [Google Scholar]
  47. Benson BJ, Williams MC, Sueishi K, Goerke J, Sargeant T. Role of calcium ions the structure and function of pulmonary surfactant. Biochim Biophys Acta 1984; 793: 18– 27 [CrossRef] [PubMed]
    [Google Scholar]
  48. Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 2005; 56: 590– 603 [CrossRef] [PubMed]
    [Google Scholar]
  49. Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE et al. A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 2007; 1: 109– 119 [CrossRef] [PubMed]
    [Google Scholar]
  50. Wakeman CA, Hammer ND, Stauff DL, Attia AS, Anzaldi LL et al. Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus. Mol Microbiol 2012; 86: 1376– 1392 [CrossRef] [PubMed]
    [Google Scholar]
  51. Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 2011; 65: 129– 147 [CrossRef] [PubMed]
    [Google Scholar]
  52. Hurd AF, Garcia-Lara J, Rauter Y, Cartron M, Mohamed R et al. The iron-regulated surface proteins IsdA, IsdB, and IsdH are not required for heme iron utilization in Staphylococcus aureus. FEMS Microbiol Lett 2012; 329: 93– 100 [CrossRef] [PubMed]
    [Google Scholar]
  53. Serafini A, Pisu D, Palù G, Rodriguez GM, Manganelli R. The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS One 2013; 8: e78351 [CrossRef] [PubMed]
    [Google Scholar]
  54. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. Embo J 1993; 12: 3967– 3975 [PubMed]
    [Google Scholar]
  55. Dyke KG, Jevons MP, Parker MT. Penicillinase production and intrinsic resistance to penicillins in Staphylococcus aures. Lancet 1966; 1: 835– 838 [PubMed] [Crossref]
    [Google Scholar]
  56. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 2005; 187: 2426– 2438 [CrossRef] [PubMed]
    [Google Scholar]
  57. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 2003; 41: 5113– 5120 [CrossRef] [PubMed]
    [Google Scholar]
  58. Holden MT, Lindsay JA, Corton C, Quail MA, Cockfield JD et al. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol 2010; 192: 888– 892 [CrossRef] [PubMed]
    [Google Scholar]
  59. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013; 23: 653– 664 [CrossRef] [PubMed]
    [Google Scholar]
  60. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G et al. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 2001; 183: 7341– 7353 [CrossRef] [PubMed]
    [Google Scholar]
  61. Vojtov N, Ross HF, Novick RP. Global repression of exotoxin synthesis by staphylococcal superantigens. Proc Natl Acad Sci USA 2002; 99: 10102– 10107 [CrossRef] [PubMed]
    [Google Scholar]
  62. Beasley FC, Vinés ED, Grigg JC, Zheng Q, Liu S et al. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 2009; 72: 947– 963 [CrossRef] [PubMed]
    [Google Scholar]
  63. Xiong A, Singh VK, Cabrera G, Jayaswal RK. Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus. Microbiology 2000; 146: 659– 668 [CrossRef] [PubMed]
    [Google Scholar]
  64. Heinrichs JH, Gatlin LE, Kunsch C, Choi GH, Hanson MS. Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus. J Bacteriol 1999; 181: 1436– 1443 [PubMed]
    [Google Scholar]
  65. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 2003; 299: 906– 909 [CrossRef] [PubMed]
    [Google Scholar]
  66. Skaar EP, Humayun M, Bae T, Debord KL, Schneewind O. Iron-source preference of Staphylococcus aureus infections. Science 2004; 305: 1626– 1628 [CrossRef] [PubMed]
    [Google Scholar]
  67. Horsburgh MJ, Ingham E, Foster SJ. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and Is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 2001; 183: 468– 475 [CrossRef] [PubMed]
    [Google Scholar]
  68. Sebulsky MT, Speziali CD, Shilton BH, Edgell DR, Heinrichs DE. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer. J Biol Chem 2004; 279: 53152– 53159 [CrossRef] [PubMed]
    [Google Scholar]
  69. Morrissey JA, Cockayne A, Hill PJ, Williams P. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect Immun 2000; 68: 6281– 6288 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000579
Loading
/content/journal/micro/10.1099/mic.0.000579
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error