1887

Abstract

The genomic integrity of is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in , were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000578
2017-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1740.html?itemId=/content/journal/micro/10.1099/mic.0.000578&mimeType=html&fmt=ahah

References

  1. Fox M, Roberts JJ. Drug resistance and DNA repair. Cancer Metastasis Rev 1987;6:261–281 [CrossRef][PubMed]
    [Google Scholar]
  2. Perron GG, Lee AE, Wang Y, Huang WE, Barraclough TG. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Proc Biol Sci 2012;279:1477–1484 [CrossRef][PubMed]
    [Google Scholar]
  3. Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis 2003;9:838–845 [CrossRef][PubMed]
    [Google Scholar]
  4. Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N et al. Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS One 2008;3:e1538 [CrossRef][PubMed]
    [Google Scholar]
  5. Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 2004;84:29–44 [CrossRef][PubMed]
    [Google Scholar]
  6. Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A et al. Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol Cell Proteomics 2015;14:2160–2176 [CrossRef][PubMed]
    [Google Scholar]
  7. Gorna AE, Bowater RP, Dziadek J. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci 2010;119:187–202 [CrossRef][PubMed]
    [Google Scholar]
  8. Raman K, Chandra N. Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 2008;8:234–2180 [CrossRef][PubMed]
    [Google Scholar]
  9. Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 1997;78:237–246 [CrossRef][PubMed]
    [Google Scholar]
  10. Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 1997;99:2818–2825 [CrossRef][PubMed]
    [Google Scholar]
  11. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 1991;254:1001–1003 [CrossRef][PubMed]
    [Google Scholar]
  12. Glickman MS. Double-strand DNA break repair in Mycobacteria. Microbiol Spectr 2014;2: doi: 10.1128/microbiolspec.MGM2-0024-2013[PubMed]
    [Google Scholar]
  13. Kurthkoti K, Varshney U. Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis 2011;91:533–543 [CrossRef][PubMed]
    [Google Scholar]
  14. Dos Vultos T, Mestre O, Tonjum T, Gicquel B. DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev 2009;33:471–487 [CrossRef][PubMed]
    [Google Scholar]
  15. Mizrahi V, Andersen SJ. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence?. Mol Microbiol 1998;29:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  16. Muniyappa K, Vaze MB, Ganesh N, Sreedhar Reddy M, Guhan N et al. Comparative genomics of Mycobacterium tuberculosis and Escherichia coli for recombination (rec) genes. Microbiology 2000;146:2093–2095 [CrossRef][PubMed]
    [Google Scholar]
  17. Arif SM, Patil AG, Varshney U, Vijayan M. Biochemical and structural studies of Mycobacterium smegmatis MutT1, a sanitization enzyme with unusual modes of association. Acta Crystallogr D Struct Biol 2017;73:349–364 [CrossRef][PubMed]
    [Google Scholar]
  18. Arif SM, Geethanandan K, Mishra P, Surolia A, Varshney U et al. Structural plasticity in Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) and its functional implications. Acta Crystallogr D Biol Crystallogr 2015;71:1514–1527 [CrossRef][PubMed]
    [Google Scholar]
  19. Chandran AV, Prabu JR, Nautiyal A, Patil KN, Muniyappa K et al. Structural studies on Mycobacterium tuberculosis RecA: molecular plasticity and interspecies variability. J Biosci 2015;40:13–30 [CrossRef][PubMed]
    [Google Scholar]
  20. Chandran AV, Prabu JR, Manjunath GP, Patil KN, Muniyappa K et al. Crystallization and preliminary X-ray studies of the C-terminal domain of Mycobacterium tuberculosis LexA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010;66:1093–1095 [CrossRef][PubMed]
    [Google Scholar]
  21. Prabu JR, Manjunath GP, Chandra NR, Muniyappa K, Vijayan M. Functionally important movements in RecA molecules and filaments: studies involving mutation and environmental changes. Acta Crystallogr D Biol Crystallogr 2008;64:1146–1157 [CrossRef][PubMed]
    [Google Scholar]
  22. Prabu JR, Thamotharan S, Khanduja JS, Chandra NR, Muniyappa K et al. Crystallographic and modelling studies on Mycobacterium tuberculosis RuvA. Biochim Biophys Acta - Prot Proteomics 2009;1794:1001–1009 [CrossRef]
    [Google Scholar]
  23. Singh A, Bhagavat R, Vijayan M, Chandra N. A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes. Tuberculosis 2016;99:109–119 [CrossRef][PubMed]
    [Google Scholar]
  24. Davis EO, Forse LN. DNA repair: key to survival?. In Parish T, Brown A. (editors) Mycobacterium: Genomics and Molecular Biology UK: Caister Academic Press; 2009
    [Google Scholar]
  25. van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015;13:83–94 [CrossRef][PubMed]
    [Google Scholar]
  26. Sang PB, Srinath T, Patil AG, Woo EJ, Varshney U. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res 2015;43:8452–8463 [CrossRef][PubMed]
    [Google Scholar]
  27. Hassim F, Papadopoulos AO, Kana BD, Gordhan BG. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat Res 2015;779:24–32 [CrossRef][PubMed]
    [Google Scholar]
  28. Castañeda-García A, Prieto AI, Rodríguez-Beltrán J, Alonso N, Cantillon D et al. A non-canonical mismatch repair pathway in prokaryotes. Nat Commun 2017;8:14246 [CrossRef][PubMed]
    [Google Scholar]
  29. Gupta R, Unciuleac MC, Shuman S, Glickman MS. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Res 2017;45:762–774 [CrossRef][PubMed]
    [Google Scholar]
  30. Patil AG, Sang PB, Govindan A, Varshney U. Mycobacterium tuberculosis MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. J Biol Chem 2013;288:11252–11262 [CrossRef][PubMed]
    [Google Scholar]
  31. Bhattarai H, Gupta R, Glickman MS. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis. J Bacteriol 2014;196:3366–3376 [CrossRef][PubMed]
    [Google Scholar]
  32. Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol Microbiol 2011;79:316–330 [CrossRef][PubMed]
    [Google Scholar]
  33. Nautiyal A, Rani PS, Sharples GJ, Muniyappa K. Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain. Mol Microbiol 2016;100:656–674 [CrossRef][PubMed]
    [Google Scholar]
  34. Thakur M, Kumar MB, Muniyappa K. Mycobacterium tuberculosis UvrB Is a robust DNA-stimulated ATPase that also possesses structure-specific ATP-dependent DNA helicase activity. Biochemistry 2016;55:5865–5883 [CrossRef][PubMed]
    [Google Scholar]
  35. Arif SM, Varshney U, Vijayan M. Hydrolysis of diadenosine polyphosphates. Exploration of an additional role of Mycobacterium smegmatis MutT1. J Struct Biol 2017;199:165–176 [CrossRef][PubMed]
    [Google Scholar]
  36. Moolla N, Goosens VJ, Kana BD, Gordhan BG. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis. DNA Repair 2014;13:32–41 [CrossRef][PubMed]
    [Google Scholar]
  37. Płociński P, Brissett NC, Bianchi J, Brzostek A, Korycka-Machała M et al. DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria. Nat Commun 2017;8:1251 [CrossRef][PubMed]
    [Google Scholar]
  38. Huffman JL, Sundheim O, Tainer JA. DNA base damage recognition and removal: new twists and grooves. Mutat Res 2005;577:55–76 [CrossRef][PubMed]
    [Google Scholar]
  39. Dianov G, Lindahl T. Reconstitution of the DNA base excision-repair pathway. Curr Biol 1994;4:1069–1076 [CrossRef][PubMed]
    [Google Scholar]
  40. Neeley WL, Essigmann JM. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 2006;19:491–505 [CrossRef][PubMed]
    [Google Scholar]
  41. David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 2007;447:941–950 [CrossRef][PubMed]
    [Google Scholar]
  42. Michaels ML, Miller JH. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 1992;174:6321–6325 [CrossRef][PubMed]
    [Google Scholar]
  43. Jain R, Kumar P, Varshney U. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. DNA Repair 2007;6:1774–1785 [CrossRef][PubMed]
    [Google Scholar]
  44. Guo Y, Bandaru V, Jaruga P, Zhao X, Burrows CJ et al. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair 2010;9:177–190 [CrossRef][PubMed]
    [Google Scholar]
  45. Sidorenko VS, Rot MA, Filipenko ML, Nevinsky GA, Zharkov DO. Novel DNA glycosylases from Mycobacterium tuberculosis. Biochemistry 2008;73:442–450 [CrossRef][PubMed]
    [Google Scholar]
  46. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  47. Kurthkoti K, Srinath T, Kumar P, Malshetty VS, Sang PB et al. A distinct physiological role of MutY in mutation prevention in mycobacteria. Microbiology 2010;156:88–93 [CrossRef][PubMed]
    [Google Scholar]
  48. Bessman MJ, Frick DN, O'Handley SF. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 1996;271:25059–25062 [CrossRef][PubMed]
    [Google Scholar]
  49. Dos Vultos T, Blázquez J, Rauzier J, Matic I, Gicquel B. Identification of Nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol 2006;188:3159–3161 [CrossRef][PubMed]
    [Google Scholar]
  50. Sang PB, Varshney U. Biochemical properties of MutT2 proteins from Mycobacterium tuberculosis and M. smegmatis and their contrasting antimutator roles in Escherichia coli. J Bacteriol 2013;195:1552–1560 [CrossRef][PubMed]
    [Google Scholar]
  51. Lu LD, Sun Q, Fan XY, Zhong Y, Yao YF et al. Mycobacterial MazG is a novel NTP pyrophosphohydrolase involved in oxidative stress response. J Biol Chem 2010;285:28076–28085 [CrossRef][PubMed]
    [Google Scholar]
  52. Lyu LD, Tang BK, Fan XY, Ma H, Zhao GP. Mycobacterial MazG safeguards genetic stability via housecleaning of 5-OH-dCTP. PLoS Pathog 2013;9:e1003814 [CrossRef][PubMed]
    [Google Scholar]
  53. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 2003;100:12989–12994 [CrossRef][PubMed]
    [Google Scholar]
  54. Vértessy BG, Tóth J. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc Chem Res 2009;42:97–106 [CrossRef][PubMed]
    [Google Scholar]
  55. Purnapatre K, Varshney U. Uracil DNA glycosylase from Mycobacterium smegmatis and its distinct biochemical properties. Eur J Biochem 1998;256:580–588 [CrossRef][PubMed]
    [Google Scholar]
  56. Venkatesh J, Kumar P, Krishna PS, Manjunath R, Varshney U. Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J Biol Chem 2003;278:24350–24358 [CrossRef][PubMed]
    [Google Scholar]
  57. Srinath T, Bharti SK, Varshney U. Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis. DNA Repair 2007;6:1517–1528 [CrossRef][PubMed]
    [Google Scholar]
  58. Malshetty VS, Jain R, Srinath T, Kurthkoti K, Varshney U. Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiology 2010;156:940–949 [CrossRef][PubMed]
    [Google Scholar]
  59. O'Brien PJ, Ellenberger T. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. J Biol Chem 2004;279:26876–26884 [CrossRef][PubMed]
    [Google Scholar]
  60. Miggiano R, Casazza V, Garavaglia S, Ciaramella M, Perugino G et al. Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J Bacteriol 2013;195:2728–2736 [CrossRef][PubMed]
    [Google Scholar]
  61. Biswas T, Clos LJ, Santalucia J, Mitra S, Roy R. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition. J Mol Biol 2002;320:503–513 [CrossRef][PubMed]
    [Google Scholar]
  62. Loeb LA. Apurinic sites as mutagenic intermediates. Cell 1985;40:483–484 [CrossRef][PubMed]
    [Google Scholar]
  63. Puri RV, Singh N, Gupta RK, Tyagi AK. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One 2013;8:e71535 [CrossRef][PubMed]
    [Google Scholar]
  64. Puri RV, Reddy PV, Tyagi AK. Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs. PLoS One 2014;9:e92035 [CrossRef][PubMed]
    [Google Scholar]
  65. Takeuchi M, Lillis R, Demple B, Takeshita M. Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA. J Biol Chem 1994;269:21907–21914[PubMed]
    [Google Scholar]
  66. Hanawalt PC, Cooper PK, Ganesan AK, Smith CA. DNA repair in bacteria and mammalian cells. Annu Rev Biochem 1979;48:783–836 [CrossRef][PubMed]
    [Google Scholar]
  67. Snowden A, Kow YW, van Houten B. Damage repertoire of the Escherichia coli UvrABC nuclease complex includes abasic sites, base-damage analogues, and lesions containing adjacent 5' or 3' nicks. Biochemistry 1990;29:7251–7259 [CrossRef][PubMed]
    [Google Scholar]
  68. Sancar A, Rupp WD. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 1983;33:249–260 [CrossRef][PubMed]
    [Google Scholar]
  69. Verhoeven EE, Wyman C, Moolenaar GF, Goosen N. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. Embo J 2002;21:4196–4205 [CrossRef][PubMed]
    [Google Scholar]
  70. Reardon JT, Sancar A. Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 2005;79:183–235 [CrossRef][PubMed]
    [Google Scholar]
  71. Selby CP, Sancar A. Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. Proc Natl Acad Sci USA 1991;88:8232–8236 [CrossRef][PubMed]
    [Google Scholar]
  72. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 2006;74:1233–1242 [CrossRef][PubMed]
    [Google Scholar]
  73. Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 1999;96:11554–11559 [CrossRef][PubMed]
    [Google Scholar]
  74. Dutta NK, Mehra S, Didier PJ, Roy CJ, Doyle LA et al. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 2010;201:1743–1752 [CrossRef][PubMed]
    [Google Scholar]
  75. Darwin KH, Nathan CF. Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun 2005;73:4581–4587 [CrossRef][PubMed]
    [Google Scholar]
  76. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 2014;15:490 [CrossRef][PubMed]
    [Google Scholar]
  77. Kurthkoti K, Kumar P, Jain R, Varshney U. Important role of the nucleotide excision repair pathway in Mycobacterium smegmatis in conferring protection against commonly encountered DNA-damaging agents. Microbiology 2008;154:2776–2785 [CrossRef][PubMed]
    [Google Scholar]
  78. Moolenaar GF, van Rossum-Fikkert S, van Kesteren M, Goosen N. Cho, a second endonuclease involved in Escherichia coli nucleotide excision repair. Proc Natl Acad Sci USA 2002;99:1467–1472 [CrossRef][PubMed]
    [Google Scholar]
  79. Rand L, Hinds J, Springer B, Sander P, Buxton RS et al. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 2003;50:1031–1042 [CrossRef][PubMed]
    [Google Scholar]
  80. Roberts J, Park JS. Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. Curr Opin Microbiol 2004;7:120–125 [CrossRef][PubMed]
    [Google Scholar]
  81. Prabha S, Rao DN, Nagaraja V. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor. PLoS One 2011;6:e19131 [CrossRef][PubMed]
    [Google Scholar]
  82. Talaat AM, Lyons R, Howard ST, Johnston SA. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 2004;101:4602–4607 [CrossRef][PubMed]
    [Google Scholar]
  83. Houghton J, Townsend C, Williams AR, Rodgers A, Rand L et al. Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair. J Bacteriol 2012;194:2916–2923 [CrossRef][PubMed]
    [Google Scholar]
  84. Sinha KM, Stephanou NC, Unciuleac MC, Glickman MS, Shuman S. Domain requirements for DNA unwinding by mycobacterial UvrD2, an essential DNA helicase. Biochemistry 2008;47:9355–9364 [CrossRef][PubMed]
    [Google Scholar]
  85. Williams A, Güthlein C, Beresford N, Böttger EC, Springer B et al. UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J Bacteriol 2011;193:4487–4494 [CrossRef][PubMed]
    [Google Scholar]
  86. Sinha KM, Stephanou NC, Gao F, Glickman MS, Shuman S. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair. J Biol Chem 2007;282:15114–15125 [CrossRef][PubMed]
    [Google Scholar]
  87. Güthlein C, Wanner RM, Sander P, Davis EO, Bosshard M et al. Characterization of the mycobacterial NER system reveals novel functions of the uvrD1 helicase. J Bacteriol 2009;191:555–562 [CrossRef][PubMed]
    [Google Scholar]
  88. Ditse Z, Lamers MH, Warner DF. DNA Replication in Mycobacterium tuberculosis. Microbiol Spectr 2017;5: doi: 10.1128/microbiolspec.TBTB2-0027-2016 [CrossRef][PubMed]
    [Google Scholar]
  89. Rock JM, Lang UF, Chase MR, Ford CB, Gerrick ER et al. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat Genet 2015;47:677–681 [CrossRef][PubMed]
    [Google Scholar]
  90. Boshoff HI, Reed MB, Barry CE, Mizrahi V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 2003;113:183–193 [CrossRef][PubMed]
    [Google Scholar]
  91. Mizrahi V, Warner D, Ndwandwe D, Abrahams G, Venclovas C. A novel inducible mutagenesis system in Mycobacterium tuberculosis. Faseb J 2012;26:222.1
    [Google Scholar]
  92. Fuchs RP, Fujii S. Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb Perspect Biol 2013;5:a012682 [CrossRef][PubMed]
    [Google Scholar]
  93. Bergval IL, Klatser PR, Schuitema AR, Oskam L, Anthony RM. Specific mutations in the Mycobacterium tuberculosis rpoB gene are associated with increased dnaE2 expression. FEMS Microbiol Lett 2007;275:338–343 [CrossRef][PubMed]
    [Google Scholar]
  94. Kana BD, Abrahams GL, Sung N, Warner DF, Gordhan BG et al. Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J Bacteriol 2010;192:2220–2227 [CrossRef][PubMed]
    [Google Scholar]
  95. Sharma A, Nair DT. MsDpo4—a DinB Homolog from Mycobacterium smegmatis —Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches. J Nucleic Acids 2012;2012:1–8
    [Google Scholar]
  96. Ordonez H, Shuman S. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Res 2014;42:12722–12734 [CrossRef][PubMed]
    [Google Scholar]
  97. Ordonez H, Uson ML, Shuman S. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res 2014;42:11056–11070 [CrossRef][PubMed]
    [Google Scholar]
  98. Ghosh S, Samaddar S, Kirtania P, das Gupta SK. A DinB ortholog enables mycobacterial growth under dTTP-limiting conditions induced by the expression of a mycobacteriophage-derived ribonucleotide reductase gene. J Bacteriol 2016;198:352–362 [CrossRef][PubMed]
    [Google Scholar]
  99. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 2004;279:40174–40184 [CrossRef][PubMed]
    [Google Scholar]
  100. Zhu H, Bhattarai H, Yan HG, Shuman S, Glickman MS. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry 2012;51:10147–10158 [CrossRef][PubMed]
    [Google Scholar]
  101. Pitcher RS, Tonkin LM, Green AJ, Doherty AJ. Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis. J Mol Biol 2005;351:531–544 [CrossRef][PubMed]
    [Google Scholar]
  102. Guilliam TA, Keen BA, Brissett NC, Doherty AJ. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes. Nucleic Acids Res 2015;43:6651–6664 [CrossRef][PubMed]
    [Google Scholar]
  103. Pitcher RS, Brissett NC, Picher AJ, Andrade P, Juarez R et al. Structure and function of a mycobacterial NHEJ DNA repair polymerase. J Mol Biol 2007;366:391–405 [CrossRef][PubMed]
    [Google Scholar]
  104. Korycka-Machala M, Rychta E, Brzostek A, Sayer HR, Rumijowska-Galewicz A et al. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob Agents Chemother 2007;51:2888–2897 [CrossRef][PubMed]
    [Google Scholar]
  105. Srivastava SK, Tripathi RP, Ramachandran R. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J Biol Chem 2005;280:30273–30281 [CrossRef][PubMed]
    [Google Scholar]
  106. Gong C, Martins A, Bongiorno P, Glickman M, Shuman S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem 2004;279:20594–20606 [CrossRef][PubMed]
    [Google Scholar]
  107. Zhu H, Shuman S. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide. J Biol Chem 2008;283:8331–8339 [CrossRef][PubMed]
    [Google Scholar]
  108. Della M, Palmbos PL, Tseng HM, Tonkin LM, Daley JM et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 2004;306:683–685 [CrossRef][PubMed]
    [Google Scholar]
  109. Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H et al. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 2005;12:304–312 [CrossRef][PubMed]
    [Google Scholar]
  110. Oivanen M, Kuusela S, Lönnberg H. Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of rna by brønsted acids and bases. Chem Rev 1998;98:961–990 [CrossRef][PubMed]
    [Google Scholar]
  111. Schroeder JW, Randall JR, Matthews LA, Simmons LA. Ribonucleotides in bacterial DNA. Crit Rev Biochem Mol Biol 2015;50:181–193 [CrossRef][PubMed]
    [Google Scholar]
  112. Vaisman A, Woodgate R. Redundancy in ribonucleotide excision repair: competition, compensation, and cooperation. DNA Repair 2015;29:74–82 [CrossRef][PubMed]
    [Google Scholar]
  113. Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. Febs J 2009;276:1494–1505 [CrossRef][PubMed]
    [Google Scholar]
  114. Vaisman A, McDonald JP, Noll S, Huston D, Loeb G et al. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutat Res 2014;761:21–33 [CrossRef][PubMed]
    [Google Scholar]
  115. Watkins HA, Baker EN. Structural and functional characterization of an RNase HI domain from the bifunctional protein Rv2228c from Mycobacterium tuberculosis. J Bacteriol 2010;192:2878–2886 [CrossRef][PubMed]
    [Google Scholar]
  116. Jacewicz A, Shuman S. Biochemical characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a bifunctional enzyme composed of autonomous N-terminal type I RNase H and C-terminal acid phosphatase domains. J Bacteriol 2015;197:2489–2498 [CrossRef][PubMed]
    [Google Scholar]
  117. Minias AE, Brzostek AM, Korycka-Machala M, Dziadek B, Minias P et al. RNase HI is essential for survival of Mycobacterium smegmatis. PLoS One 2015;10:e0126260 [CrossRef][PubMed]
    [Google Scholar]
  118. Vaisman A, McDonald JP, Huston D, Kuban W, Liu L et al. Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLoS Genet 2013;9:e1003878 [CrossRef][PubMed]
    [Google Scholar]
  119. Gupta R, Chatterjee D, Glickman MS, Shuman S. Division of labor among Mycobacterium smegmatis RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase. Nucleic Acids Res 2017;45:1–14 [CrossRef][PubMed]
    [Google Scholar]
  120. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 2011;43:482–486 [CrossRef][PubMed]
    [Google Scholar]
  121. Kucukyildirim S, Long H, Sung W, Miller SF, Doak TG et al. The rate and spectrum of spontaneous mutations in Mycobacterium smegmatis, a bacterium naturally devoid of the postreplicative mismatch repair pathway. G3 2016;6:2157–2163 [CrossRef][PubMed]
    [Google Scholar]
  122. Springer B, Sander P, Sedlacek L, Hardt WD, Mizrahi V et al. Lack of mismatch correction facilitates genome evolution in mycobacteria. Mol Microbiol 2004;53:1601–1609 [CrossRef][PubMed]
    [Google Scholar]
  123. Ishino S, Nishi Y, Oda S, Uemori T, Sagara T et al. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Res 2016;44:2977–2986 [CrossRef][PubMed]
    [Google Scholar]
  124. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012;47:497–510 [CrossRef][PubMed]
    [Google Scholar]
  125. Hiom K. DNA repair: common approaches to fixing double-strand breaks. Curr Biol 2009;19:R523–R525 [CrossRef][PubMed]
    [Google Scholar]
  126. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010;79:181–211 [CrossRef][PubMed]
    [Google Scholar]
  127. Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999;63:751–813[PubMed]
    [Google Scholar]
  128. Wigley DB. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 2013;11:9–13 [CrossRef][PubMed]
    [Google Scholar]
  129. Sinha KM, Unciuleac MC, Glickman MS, Shuman S. AdnAB: a new DSB-resecting motor-nuclease from mycobacteria. Genes Dev 2009;23:1423–1437 [CrossRef][PubMed]
    [Google Scholar]
  130. Chédin F, Ehrlich SD, Kowalczykowski SC. The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro. J Mol Biol 2000;298:7–20 [CrossRef][PubMed]
    [Google Scholar]
  131. Gupta R, Ryzhikov M, Koroleva O, Unciuleac M, Shuman S et al. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res 2013;41:2284–2295 [CrossRef][PubMed]
    [Google Scholar]
  132. Gupta R, Shuman S, Glickman MS. RecF and RecR play critical roles in the homologous recombination and single-strand annealing pathways of mycobacteria. J Bacteriol 2015;197:3121–3132 [CrossRef][PubMed]
    [Google Scholar]
  133. Cox MM. Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 1999;63:311–366[PubMed][Crossref]
    [Google Scholar]
  134. Davis EO, Sedgwick SG, Colston MJ. Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J Bacteriol 1991;173:5653–5662 [CrossRef][PubMed]
    [Google Scholar]
  135. Guhan N, Muniyappa K. Mycobacterium tuberculosis RecA intein, a LAGLIDADG homing endonuclease, displays Mn(2+) and DNA-dependent ATPase activity. Nucleic Acids Res 2003;31:4184–4191 [CrossRef][PubMed]
    [Google Scholar]
  136. Guhan N, Muniyappa K. Mycobacterium tuberculosis RecA intein possesses a novel ATP-dependent site-specific double-stranded DNA endonuclease activity. J Biol Chem 2002;277:16257–16264 [CrossRef][PubMed]
    [Google Scholar]
  137. Datta S, Krishna R, Ganesh N, Chandra NR, Muniyappa K et al. Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J Bacteriol 2003;185:4280–4284 [CrossRef][PubMed]
    [Google Scholar]
  138. Datta S, Prabu MM, Vaze MB, Ganesh N, Chandra NR et al. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res 2000;28:4964–4973 [CrossRef][PubMed]
    [Google Scholar]
  139. Arora A, Chandra NR, das A, Gopal B, Mande SC et al. Structural biology of Mycobacterium tuberculosis proteins: the Indian efforts. Tuberculosis 2011;91:456–468 [CrossRef][PubMed]
    [Google Scholar]
  140. Vijayan M. Structural biology of mycobacterial proteins: the Bangalore effort. Tuberculosis 2005;85:357–366 [CrossRef][PubMed]
    [Google Scholar]
  141. Papavinasasundaram KG, Anderson C, Brooks PC, Thomas NA, Movahedzadeh F et al. Slow induction of RecA by DNA damage in Mycobacterium tuberculosis. Microbiology 2001;147:3271–3279 [CrossRef][PubMed]
    [Google Scholar]
  142. Davis EO, Springer B, Gopaul KK, Papavinasasundaram KG, Sander P et al. DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol 2002;46:791–800 [CrossRef][PubMed]
    [Google Scholar]
  143. Davis EO, Dullaghan EM, Rand L. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J Bacteriol 2002;184:3287–3295 [CrossRef][PubMed]
    [Google Scholar]
  144. Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS et al. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 2012;287:22004–22014 [CrossRef][PubMed]
    [Google Scholar]
  145. Muniyappa K, Shaner SL, Tsang SS, Radding CM. Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination. Proc Natl Acad Sci USA 1984;81:2757–2761 [CrossRef][PubMed]
    [Google Scholar]
  146. Reddy MS, Guhan N, Muniyappa K. Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 2001;276:45959–45968 [CrossRef][PubMed]
    [Google Scholar]
  147. Saikrishnan K, Jeyakanthan J, Venkatesh J, Acharya N, Sekar K et al. Structure of Mycobacterium tuberculosis single-stranded DNA-binding protein. Variability in quaternary structure and its implications. J Mol Biol 2003;331:385–393 [CrossRef][PubMed]
    [Google Scholar]
  148. Singh A, Varshney U, Vijayan M. Structure of the second Single Stranded DNA Binding protein (SSBb) from Mycobacterium smegmatis. J Struct Biol 2016;196:448–454 [CrossRef][PubMed]
    [Google Scholar]
  149. Singh A, Vijayan M, Varshney U. Distinct properties of a hypoxia specific paralog of single stranded DNA binding (SSB) protein in mycobacteria. Tuberculosis 2018;108:16–25 [CrossRef]
    [Google Scholar]
  150. Voskuil MI, Visconti KC, Schoolnik GK. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 2004;84:218–227 [CrossRef][PubMed]
    [Google Scholar]
  151. Lusetti SL, Cox MM. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 2002;71:71–100 [CrossRef][PubMed]
    [Google Scholar]
  152. Sharples GJ, Ingleston SM, Lloyd RG. Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 1999;181:5543–5550[PubMed]
    [Google Scholar]
  153. Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. Embo J 1991;10:4381–4389[PubMed]
    [Google Scholar]
  154. Lloyd RG, Rudolph CJ. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 2016;62:827–840 [CrossRef][PubMed]
    [Google Scholar]
  155. Sharples GJ, Chan SN, Mahdi AA, Whitby MC, Lloyd RG. Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. Embo J 1994;13:6133–6142[PubMed]
    [Google Scholar]
  156. Thakur RS, Basavaraju S, Somyajit K, Jain A, Subramanya S et al. Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J 2013;280:1841–1860 [CrossRef][PubMed]
    [Google Scholar]
  157. Khanduja JS, Muniyappa K. Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins. J Biol Chem 2012;287:1345–1360 [CrossRef][PubMed]
    [Google Scholar]
  158. Khanduja JS, Tripathi P, Muniyappa K. Mycobacterium tuberculosis RuvA induces two distinct types of structural distortions between the homologous and heterologous Holliday junctions. Biochemistry 2009;48:27–40 [CrossRef][PubMed]
    [Google Scholar]
  159. Aravind L, Makarova KS, Koonin EV. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 2000;28:3417–3432 [CrossRef][PubMed]
    [Google Scholar]
  160. Iwamoto A, Osawa A, Kawai M, Honda H, Yoshida S et al. Mutations in the essential Escherichia coli gene, yqgF, and their effects on transcription. J Mol Microbiol Biotechnol 2012;22:17–23 [CrossRef][PubMed]
    [Google Scholar]
  161. Kurata T, Nakanishi S, Hashimoto M, Taoka M, Yamazaki Y et al. Novel essential gene involved in 16S rRNA processing in Escherichia coli. J Mol Biol 2015;427:955–965 [CrossRef][PubMed]
    [Google Scholar]
  162. Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem Sci 1998;23:394–398 [CrossRef][PubMed]
    [Google Scholar]
  163. Aravind L, Koonin EV. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 2001;11:1365–1374 [CrossRef][PubMed]
    [Google Scholar]
  164. Doherty AJ, Jackson SP, Weller GR. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett 2001;500:186–188 [CrossRef][PubMed]
    [Google Scholar]
  165. Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 2002;297:1686–1689 [CrossRef][PubMed]
    [Google Scholar]
  166. Brissett NC, Doherty AJ. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway. Biochem Soc Trans 2009;37:539–545 [CrossRef][PubMed]
    [Google Scholar]
  167. Pitcher RS, Brissett NC, Doherty AJ. Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 2007;61:259–282 [CrossRef][PubMed]
    [Google Scholar]
  168. Zhu H, Shuman S. Novel 3'-ribonuclease and 3'-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D. J Biol Chem 2005;280:25973–25981 [CrossRef][PubMed]
    [Google Scholar]
  169. Brissett NC, Martin MJ, Bartlett EJ, Bianchi J, Blanco L et al. Molecular basis for DNA double-strand break annealing and primer extension by an NHEJ DNA polymerase. Cell Rep 2013;5:1108–1120 [CrossRef][PubMed]
    [Google Scholar]
  170. Brissett NC, Martin MJ, Pitcher RS, Bianchi J, Juarez R et al. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase. Mol Cell 2011;41:221–231 [CrossRef][PubMed]
    [Google Scholar]
  171. Nair PA, Smith P, Shuman S. Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily. Proc Natl Acad Sci USA 2010;107:12822–12827 [CrossRef][PubMed]
    [Google Scholar]
  172. Bartlett EJ, Brissett NC, Doherty AJ. Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates. Proc Natl Acad Sci USA 2013;110:E1984E1991 [CrossRef][PubMed]
    [Google Scholar]
  173. Pitcher RS, Green AJ, Brzostek A, Korycka-Machala M, Dziadek J et al. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair 2007;6:1271–1276 [CrossRef][PubMed]
    [Google Scholar]
  174. Pitcher RS, Tonkin LM, Daley JM, Palmbos PL, Green AJ et al. Mycobacteriophage exploit NHEJ to facilitate genome circularization. Mol Cell 2006;23:743–748 [CrossRef][PubMed]
    [Google Scholar]
  175. Aniukwu J, Glickman MS, Shuman S. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 2008;22:512–527 [CrossRef][PubMed]
    [Google Scholar]
  176. Shao Z, Davis AJ, Fattah KR, So S, Sun J et al. Persistently bound Ku at DNA ends attenuates DNA end resection and homologous recombination. DNA Repair 2012;11:310–316 [CrossRef][PubMed]
    [Google Scholar]
  177. Lee KJ, Saha J, Sun J, Fattah KR, Wang SC et al. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucleic Acids Res 2016;44:1732–1745 [CrossRef][PubMed]
    [Google Scholar]
  178. Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M et al. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 2006;34:1588–1596 [CrossRef][PubMed]
    [Google Scholar]
  179. Derouiche A, Petranovic D, Macek B, Mijakovic I. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT. Periodicum biologorum 2016;118:399–404
    [Google Scholar]
  180. Prisic S, Husson RN. Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol Spectr 2014;2: doi: 10.1128/microbiolspec.MGM2-0006-2013 [CrossRef][PubMed]
    [Google Scholar]
  181. Kusebauch U, Ortega C, Ollodart A, Rogers RS, Sherman DR et al. Mycobacterium tuberculosis supports protein tyrosine phosphorylation. Proc Natl Acad Sci USA 2014;111:9265–9270 [CrossRef][PubMed]
    [Google Scholar]
  182. Kidane D, Sanchez H, Alonso JC, Graumann PL. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol Microbiol 2004;52:1627–1639 [CrossRef][PubMed]
    [Google Scholar]
  183. Lisby M, Mortensen UH, Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 2003;5:572–577 [CrossRef][PubMed]
    [Google Scholar]
  184. Sano Y. Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa. J Bacteriol 1993;175:2451–2454 [CrossRef][PubMed]
    [Google Scholar]
  185. Papavinasasundaram KG, Colston MJ, Davis EO. Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol Microbiol 1998;30:525–534 [CrossRef][PubMed]
    [Google Scholar]
  186. Drees JC, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM. A RecA filament capping mechanism for RecX protein. Mol Cell 2004;15:789–798 [CrossRef][PubMed]
    [Google Scholar]
  187. Venkatesh R, Ganesh N, Guhan N, Reddy MS, Chandrasekhar T et al. RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: insights into negative regulation of homologous recombination. Proc Natl Acad Sci USA 2002;99:12091–12096 [CrossRef][PubMed]
    [Google Scholar]
  188. De Mot R, Schoofs G, Vanderleyden J. A putative regulatory gene downstream of recA is conserved in gram-negative and Gram-positive bacteria. Nucleic Acids Res 1994;22:1313–1314 [CrossRef][PubMed]
    [Google Scholar]
  189. Forse LN, Houghton J, Davis EO. Enhanced expression of recX in Mycobacterium tuberculosis owing to a promoter internal to recA. Tuberculosis 2011;91:127–135 [CrossRef][PubMed]
    [Google Scholar]
  190. Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC et al. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 2003;278:2278–2285 [CrossRef][PubMed]
    [Google Scholar]
  191. Diver WP, Sargentini NJ, Smith KC. A mutation (radA100) in Escherichia coli that selectively sensitizes cells grown in rich medium to x- or u.v.-radiation, or methyl methanesulphonate. Int J Radiat Biol Relat Stud Phys Chem Med 1982;42:339–346 [CrossRef][PubMed]
    [Google Scholar]
  192. Beam CE, Saveson CJ, Lovett ST. Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 2002;184:6836–6844 [CrossRef][PubMed]
    [Google Scholar]
  193. Lovett ST. Replication arrest-stimulated recombination: dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. DNA Repair 2006;5:1421–1427 [CrossRef][PubMed]
    [Google Scholar]
  194. Burghout P, Bootsma HJ, Kloosterman TG, Bijlsma JJ, de Jongh CE et al. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA. J Bacteriol 2007;189:6540–6550 [CrossRef][PubMed]
    [Google Scholar]
  195. Carrasco B, Fernández S, Asai K, Ogasawara N, Alonso JC. Effect of the recU suppressors sms and subA on DNA repair and homologous recombination in Bacillus subtilis. Mol Genet Genomics 2002;266:899–906 [CrossRef][PubMed]
    [Google Scholar]
  196. Khanam T, Ramachandran R. Exploiting bacterial DNA repair systems as drug targets: a review of the current scenario with focus on mycobacteria. J Indian Inst Sci 2014;94:149–168
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000578
Loading
/content/journal/micro/10.1099/mic.0.000578
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error