1887

Abstract

The spirochete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common vector-borne disease in Europe and the United States. The spirochetes can be transmitted to humans via ticks, and then spread to different tissues, leading to arthritis, carditis and neuroborreliosis. Although antibiotics have commonly been used to treat infected individuals, some treated patients do not respond to antibiotics and experience persistent, long-term arthritis. Thus, there is a need to investigate alternative therapeutics against Lyme disease. The spirochete bacterium colonization is partly attributed to the binding of the bacterial outer-surface proteins to the glycosaminoglycan (GAG) chains of host proteoglycans. Blocking the binding of these proteins to GAGs is a potential strategy to prevent infection. In this review, we have summarized the recent reports of B. burgdorferi sensu lato GAG-binding proteins and discussed the potential use of synthetic and semi-synthetic compounds, including GAG analogues, to block pathogen interaction with GAGs. Such information should motivate the discovery and development of novel GAG analogues as new therapeutics for Lyme disease. New therapeutic approaches should eventually reduce the burden of Lyme disease and improve human health.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000571
2017-11-08
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1759.html?itemId=/content/journal/micro/10.1099/mic.0.000571&mimeType=html&fmt=ahah

References

  1. Steere AC, Strle F, Wormser GP, Hu LT, Branda JA et al. Lyme borreliosis. Nat Rev Dis Primers 2016; 2: 16090 [CrossRef] [PubMed]
    [Google Scholar]
  2. Tilly K, Rosa PA, Stewart PE. Biology of infection with Borrelia burgdorferi. Infect Dis Clin North Am 2008; 22: 217– 234 [CrossRef] [PubMed]
    [Google Scholar]
  3. Radolf JD, Caimano MJ, Stevenson B, Hu LT, Lt H. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 2012; 10: 87– 99 [CrossRef] [PubMed]
    [Google Scholar]
  4. Sanchez E, Vannier E, Wormser GP, Hu LT. Diagnosis, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: a review. JAMA 2016; 315: 1767– 1777 [CrossRef] [PubMed]
    [Google Scholar]
  5. Steere AC, Angelis SM. Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum 2006; 54: 3079– 3086 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lin YP, Benoit V, Yang X, Martínez-Herranz R, Pal U et al. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLoS Pathog 2014; 10: e1004238 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lin YP, Chen Q, Ritchie JA, Dufour NP, Fischer JR et al. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization. Cell Microbiol 2015; 17: 860– 875 [CrossRef] [PubMed]
    [Google Scholar]
  8. Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003; 13: 29R– 40 [CrossRef] [PubMed]
    [Google Scholar]
  9. Fitton JH. Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 2011; 9: 1731– 1760 [CrossRef] [PubMed]
    [Google Scholar]
  10. Mcgeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem 2008; 8: 1384– 1394 [CrossRef] [PubMed]
    [Google Scholar]
  11. Li P, Sheng J, Liu Y, Li J, Liu J et al. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2013; 33: 665– 692 [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen X, Ling P, Duan R, Zhang T. Effects of heparosan and heparin on the adhesion and biofilm formation of several bacteria in vitro. Carbohydr Polym 2012; 88: 1288– 1292 [Crossref]
    [Google Scholar]
  13. Volpi N. Therapeutic applications of glycosaminoglycans. Curr Med Chem 2006; 13: 1799– 1810 [CrossRef] [PubMed]
    [Google Scholar]
  14. Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol 2013; 21: 372– 379 [CrossRef] [PubMed]
    [Google Scholar]
  15. Li L, Ly M, Linhardt RJ. Proteoglycan sequence. Mol Biosyst 2012; 8: 1613– 1625 [CrossRef] [PubMed]
    [Google Scholar]
  16. Leong JM, Robbins D, Rosenfeld L, Lahiri B, Parveen N. Structural requirements for glycosaminoglycan recognition by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 1998; 66: 6045– 6048 [PubMed]
    [Google Scholar]
  17. Leong JM, Wang H, Magoun L, Field JA, Morrissey PE et al. Different classes of proteoglycans contribute to the attachment of Borrelia burgdorferi to cultured endothelial and brain cells. Infect Immun 1998; 66: 994– 999 [PubMed]
    [Google Scholar]
  18. Parveen N, Robbins D, Leong JM. Strain variation in glycosaminoglycan recognition influences cell-type-specific binding by lyme disease spirochetes. Infect Immun 1999; 67: 1743– 1749 [PubMed]
    [Google Scholar]
  19. Parveen N, Leong JM. Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000; 35: 1220– 1234 [CrossRef] [PubMed]
    [Google Scholar]
  20. Parveen N, Caimano M, Radolf JD, Leong JM. Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell binding. Mol Microbiol 2003; 47: 1433– 1444 [CrossRef] [PubMed]
    [Google Scholar]
  21. Fischer JR, Parveen N, Magoun L, Leong JM. Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci USA 2003; 100: 7307– 7312 [CrossRef] [PubMed]
    [Google Scholar]
  22. Fischer JR, LeBlanc KT, Leong JM. Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun 2006; 74: 435– 441 [CrossRef] [PubMed]
    [Google Scholar]
  23. Lin YP, Bhowmick R, Coburn J, Leong JM. Host cell heparan sulfate glycosaminoglycans are ligands for OspF-related proteins of the Lyme disease spirochete. Cell Microbiol 2015; 17: 1464– 1476 [CrossRef] [PubMed]
    [Google Scholar]
  24. Guo BP, Norris SJ, Rosenberg LC, Höök M. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 1995; 63: 3467– 3472 [PubMed]
    [Google Scholar]
  25. Salo J, Pietikäinen A, Söderström M, Auvinen K, Salmi M et al. Flow-tolerant adhesion of a bacterial pathogen to human endothelial cells through interaction with biglycan. J Infect Dis 2016; 213: 1623– 1631 [CrossRef] [PubMed]
    [Google Scholar]
  26. Russell TM, Johnson BJ. Lyme disease spirochaetes possess an aggrecan-binding protease with aggrecanase activity. Mol Microbiol 2013; 90: 228– 240 [CrossRef] [PubMed]
    [Google Scholar]
  27. Brown EL, Wooten RM, Johnson BJ, Iozzo RV, Smith A et al. Resistance to Lyme disease in decorin-deficient mice. J Clin Invest 2001; 107: 845– 852 [CrossRef] [PubMed]
    [Google Scholar]
  28. Russell TM, Delorey MJ, Johnson BJ. Borrelia burgdorferi BbHtrA degrades host ECM proteins and stimulates release of inflammatory cytokines in vitro. Mol Microbiol 2013; 90: 241– 251 [CrossRef] [PubMed]
    [Google Scholar]
  29. Isaacs RD. Borrelia burgdorferi bind to epithelial cell proteoglycans. J Clin Invest 1994; 93: 809– 819 [CrossRef] [PubMed]
    [Google Scholar]
  30. Guo BP, Brown EL, Dorward DW, Rosenberg LC, Höök M. Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol 1998; 30: 711– 723 [CrossRef] [PubMed]
    [Google Scholar]
  31. Benoit VM, Fischer JR, Lin YP, Parveen N, Leong JM. Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin, dermatan sulfate, and mammalian cells. Infect Immun 2011; 79: 3501– 3509 [CrossRef] [PubMed]
    [Google Scholar]
  32. Salo J, Loimaranta V, Lahdenne P, Viljanen MK, Hytönen J. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu Stricto. J Infect Dis 2011; 204: 65– 73 [CrossRef] [PubMed]
    [Google Scholar]
  33. Weening EH, Parveen N, Trzeciakowski JP, Leong JM, Höök M et al. Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 2008; 76: 5694– 5705 [CrossRef] [PubMed]
    [Google Scholar]
  34. Shi Y, Xu Q, McShan K, Liang FT. Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun 2008; 76: 1239– 1246 [CrossRef] [PubMed]
    [Google Scholar]
  35. Blevins JS, Hagman KE, Norgard MV. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 2008; 8: 82 [CrossRef] [PubMed]
    [Google Scholar]
  36. Roberts WC, Mullikin BA, Lathigra R, Hanson MS. Molecular analysis of sequence heterogeneity among genes encoding decorin binding proteins A and B of Borrelia burgdorferi sensu lato. Infect Immun 1998; 66: 5275– 5285 [PubMed]
    [Google Scholar]
  37. Fortune DE, Lin YP, Deka RK, Groshong AM, Moore BP et al. Identification of lysine residues in the Borrelia burgdorferi DbpA adhesin required for murine infection. Infect Immun 2014; 82: 3186– 3198 [CrossRef] [PubMed]
    [Google Scholar]
  38. Probert WS, Johnson BJ. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 1998; 30: 1003– 1015 [CrossRef] [PubMed]
    [Google Scholar]
  39. Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP et al. Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 2006; 59: 1591– 1601 [CrossRef] [PubMed]
    [Google Scholar]
  40. Hyde JA, Weening EH, Chang M, Trzeciakowski JP, Höök M et al. Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol 2011; 82: 99– 113 [CrossRef] [PubMed]
    [Google Scholar]
  41. Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P et al. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 2008; 4: e1000090 [CrossRef] [PubMed]
    [Google Scholar]
  42. Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P et al. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 2008; 4: e1000169 [CrossRef] [PubMed]
    [Google Scholar]
  43. Moriarty TJ, Shi M, Lin YP, Ebady R, Zhou H et al. Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol 2012; 86: 1116– 1131 [CrossRef] [PubMed]
    [Google Scholar]
  44. Antonara S, Chafel RM, LaFrance M, Coburn J. Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol 2007; 66: 262– 276 [CrossRef] [PubMed]
    [Google Scholar]
  45. Akins DR, Caimano MJ, Yang X, Cerna F, Norgard MV et al. Molecular and evolutionary analysis of Borrelia burgdorferi 297 circular plasmid-encoded lipoproteins with OspE- and OspF-like leader peptides. Infect Immun 1999; 67: 1526– 1532 [PubMed]
    [Google Scholar]
  46. Caimano MJ, Yang X, Popova TG, Clawson ML, Akins DR et al. Molecular and evolutionary characterization of the cp32/18 family of supercoiled plasmids in Borrelia burgdorferi 297. Infect Immun 2000; 68: 1574– 1586 [CrossRef] [PubMed]
    [Google Scholar]
  47. Brissette CA, Cooley AE, Burns LH, Riley SP, Verma A et al. Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection. Int J Med Microbiol 2008; 298 Suppl 1: 257– 267 [CrossRef] [PubMed]
    [Google Scholar]
  48. Lin T, Gao L, Zhang C, Odeh E, Jacobs MB et al. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 2012; 7: e47532 [CrossRef] [PubMed]
    [Google Scholar]
  49. Yang X, Lin YP, Heselpoth RD, Buyuktanir O, Qin J et al. Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection. Cell Microbiol 2016; 18: 97– 110 [CrossRef] [PubMed]
    [Google Scholar]
  50. Yang X, Coleman AS, Anguita J, Pal U. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity. PLoS Pathog 2009; 5: e1000326 [CrossRef] [PubMed]
    [Google Scholar]
  51. Yang X, Lenhart TR, Kariu T, Anguita J, Akins DR et al. Characterization of unique regions of Borrelia burgdorferi surface-located membrane protein 1. Infect Immun 2010; 78: 4477– 4487 [CrossRef] [PubMed]
    [Google Scholar]
  52. Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 2002; 10: 443– 455 [PubMed] [Crossref]
    [Google Scholar]
  53. Clausen T, Kaiser M, Huber R, Ehrmann M. HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 2011; 12: 152– 162 [CrossRef] [PubMed]
    [Google Scholar]
  54. Coleman JL, Toledo A, Benach JL. Borrelia burgdorferi HtrA: evidence for twofold proteolysis of outer membrane protein p66. Mol Microbiol 2016; 99: 135– 150 [CrossRef] [PubMed]
    [Google Scholar]
  55. Coleman JL, Crowley JT, Toledo AM, Benach JL. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 2013; 88: 619– 633 [CrossRef] [PubMed]
    [Google Scholar]
  56. Ye M, Sharma K, Thakur M, Smith AA, Buyuktanir O et al. HtrA, a Temperature- and stationary phase-activated protease involved in maturation of a key microbial virulence determinant, facilitates borrelia burgdorferi infection in mammalian hosts. Infect Immun 2016; 84: 2372– 2381 [CrossRef] [PubMed]
    [Google Scholar]
  57. García B, Merayo-Lloves J, Martin C, Alcalde I, Quirós LM et al. Surface proteoglycans as mediators in bacterial pathogens infections. Front Microbiol 2016; 7: 220 [CrossRef] [PubMed]
    [Google Scholar]
  58. Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc 2013; 88: 928– 943 [CrossRef] [PubMed]
    [Google Scholar]
  59. Hunter FR. Evidence for facilitated diffusion of anion in erythrocytes. Nature 1967; 213: 816– 817 [CrossRef] [PubMed]
    [Google Scholar]
  60. Schuksz M, Fuster MM, Brown JR, Crawford BE, Ditto DP et al. Surfen, a small molecule antagonist of heparan sulfate. Proc Natl Acad Sci USA 2008; 105: 13075– 13080 [CrossRef] [PubMed]
    [Google Scholar]
  61. Linhardt RJ, Toida T. Role of glycosaminoglycans in cellular communication. Acc Chem Res 2004; 37: 431– 438 [CrossRef] [PubMed]
    [Google Scholar]
  62. Islam T, Butler M, Sikkander SA, Toida T, Linhardt RJ. Further evidence that periodate cleavage of heparin occurs primarily through the antithrombin binding site. Carbohydr Res 2002; 337: 2239– 2243 [CrossRef] [PubMed]
    [Google Scholar]
  63. Casu B, Diamantini G, Fedeli G, Mantovani M, Oreste P et al. Retention of antilipemic activity by periodate-oxidized non-anticoagulant heparins. Arzneimittelforschung 1986; 36: 637– 642 [PubMed]
    [Google Scholar]
  64. Mousa SA, Linhardt R, Francis JL, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin. Thromb Haemost 2006; 96: 816– 821 [CrossRef] [PubMed]
    [Google Scholar]
  65. Xu Y, Masuko S, Takieddin M, Xu H, Liu R et al. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 2011; 334: 498– 501 [CrossRef] [PubMed]
    [Google Scholar]
  66. Xu Y, Chandarajoti K, Zhang X, Pagadala V, Dou W et al. Synthetic oligosaccharides can replace animal-sourced low-molecular weight heparins. Sci Transl Med 2017; 9: eaan5954 [CrossRef] [PubMed]
    [Google Scholar]
  67. Sudha T, Phillips P, Kanaan C, Linhardt RJ, Borsig L et al. Inhibitory effect of non-anticoagulant heparin (S-NACH) on pancreatic cancer cell adhesion and metastasis in human umbilical cord vessel segment and in mouse model. Clin Exp Metastasis 2012; 29: 431– 439 [CrossRef] [PubMed]
    [Google Scholar]
  68. Sudha T, Yalcin M, Lin HY, Elmetwally AM, Nazeer T et al. Suppression of pancreatic cancer by sulfated non-anticoagulant low molecular weight heparin. Cancer Lett 2014; 350: 25– 33 [CrossRef] [PubMed]
    [Google Scholar]
  69. Alshaiban A, Muralidharan-Chari V, Nepo A, Mousa SA. Modulation of sickle red blood cell adhesion and its associated changes in biomarkers by sulfated nonanticoagulant heparin derivative. Clin Appl Thromb Hemost 2016; 22: 230– 238 [CrossRef] [PubMed]
    [Google Scholar]
  70. Alyahya R, Sudha T, Racz M, Stain SC, Mousa SA. Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. Int J Oncol 2015; 46: 1225– 1231 [CrossRef] [PubMed]
    [Google Scholar]
  71. Ebady R, Niddam AF, Boczula AE, Kim YR, Gupta N et al. Biomechanics of Borrelia burgdorferi vascular interactions. Cell Rep 2016; 16: 2593– 2604 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000571
Loading
/content/journal/micro/10.1099/mic.0.000571
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error