1887

Abstract

Small RNA (sRNA)-mediated regulation of gene expression is a major tool to understand bacterial responses to environmental changes. In particular, pathogenic bacteria employ sRNAs to adapt to the host environment and establish infection. Members of the complex, normally present in soil microbiota, cause nosocomial lung infection especially in hospitalized cystic fibrosis patients. We sequenced the draft genome of KC-01, isolated from the coastal saline soil, and identified several potential sRNAs . Expression of seven small RNAs (Bc_KC_sr1–7) was subsequently confirmed. Two sRNAs (Bc_KC_sr1 and Bc_KC_sr2) were upregulated in response to iron depletion by 2,2’-bipyridyl and another two (Bc_KC_sr3 and Bc_KC_sr4) responded to the presence of 60 µM HO in the culture media. Bc_Kc_sr5, 6 and 7 remained unchanged under these conditions. Expression of Bc_KC_sr2, 3 and 4 also altered with a change in temperature and incubation time. A search in the Rfam and BSRD databases identified Bc_Kc_sr4 as candidate738 in D286 and assigned Bc_Kc_sr5 and 6 as tmRNA and 6S RNA, respectively. The novel sRNAs were conserved in but did not have any homologue in other genera. Bc_KC_sr1 and 4 were transcribed independently while the rest were part of the 3′ UTR of their upstream genes. TargetRNA2 predicted that these sRNAs could target a host of cellular messages with very high stringency. Intriguingly, regions surrounding the translation initiation site for several enzymes involved in Fe–S cluster and siderophore biosynthesis, ROS homeostasis, porins, transcription and translation regulators, were among the suggested putative binding sites for these sRNAs.

Keyword(s): bipyridyl , Hfq , peroxide , RACE and sRNA
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000566
2017-12-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1924.html?itemId=/content/journal/micro/10.1099/mic.0.000566&mimeType=html&fmt=ahah

References

  1. Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011;3:a003798 [CrossRef][PubMed]
    [Google Scholar]
  2. Tramonti A, De Canio M, De Biase D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 2008;70:965–982 [CrossRef][PubMed]
    [Google Scholar]
  3. Dühring U, Axmann IM, Hess WR, Wilde A. An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci USA 2006;103:7054–7058 [CrossRef][PubMed]
    [Google Scholar]
  4. Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 2008;32:827–837 [CrossRef][PubMed]
    [Google Scholar]
  5. Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2007;21:2804–2817 [CrossRef][PubMed]
    [Google Scholar]
  6. Ferrara S, Carloni S, Fulco R, Falcone M, Macchi R et al. Post-transcriptional regulation of the virulence-associated enzyme AlgC by the σ22 -dependent small RNA ErsA of Pseudomonas aeruginosa. Environ Microbiol 2015;17:199–214 [CrossRef][PubMed]
    [Google Scholar]
  7. Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 2009;16:840–846 [CrossRef][PubMed]
    [Google Scholar]
  8. Majdalani N, Vanderpool CK, Gottesman S. Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 2005;40:93–113 [CrossRef][PubMed]
    [Google Scholar]
  9. Prévost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E et al. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 2007;64:1260–1273 [CrossRef][PubMed]
    [Google Scholar]
  10. Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011;9:578–589 [CrossRef][PubMed]
    [Google Scholar]
  11. Geissmann TA, Touati D. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. Embo J 2004;23:396–405 [CrossRef][PubMed]
    [Google Scholar]
  12. Cavanagh AT, Klocko AD, Liu X, Wassarman KM. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70. Mol Microbiol 2008;67:1242–1256 [CrossRef][PubMed]
    [Google Scholar]
  13. Gildehaus N, Neusser T, Wurm R, Wagner R. Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res 2007;35:1885–1896 [CrossRef][PubMed]
    [Google Scholar]
  14. Wassarman KM. 6S RNA: a regulator of transcription. Mol Microbiol 2007;65:1425–1431 [CrossRef][PubMed]
    [Google Scholar]
  15. Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 2007;10:156–163 [CrossRef][PubMed]
    [Google Scholar]
  16. Nameki N, Felden B, Atkins JF, Gesteland RF, Himeno H et al. Functional and structural analysis of a pseudoknot upstream of the tag-encoded sequence in E. coli tmRNA. J Mol Biol 1999;286:733–744 [CrossRef][PubMed]
    [Google Scholar]
  17. Massé E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 2002;99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  18. Boysen A, Møller-Jensen J, Kallipolitis B, Valentin-Hansen P, Overgaard M. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli. J Biol Chem 2010;285:10690–10702 [CrossRef][PubMed]
    [Google Scholar]
  19. Durand S, Storz G. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 2010;75:1215–1231 [CrossRef][PubMed]
    [Google Scholar]
  20. Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J 1998;17:6069–6075 [CrossRef][PubMed]
    [Google Scholar]
  21. Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 1997;90:43–53 [CrossRef][PubMed]
    [Google Scholar]
  22. Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 2006;364:1–8 [CrossRef][PubMed]
    [Google Scholar]
  23. Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC et al. σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol 2006;62:1674–1688 [CrossRef][PubMed]
    [Google Scholar]
  24. Vanderpool CK, Gottesman S. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 2004;54:1076–1089 [CrossRef][PubMed]
    [Google Scholar]
  25. Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci USA 2007;104:20454–20459 [CrossRef][PubMed]
    [Google Scholar]
  26. Johansen J, Eriksen M, Kallipolitis B, Valentin-Hansen P. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. J Mol Biol 2008;383:1–9 [CrossRef][PubMed]
    [Google Scholar]
  27. Papenfort K, Pfeiffer V, Lucchini S, Sonawane A, Hinton JC et al. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol 2008;68:890–906 [CrossRef][PubMed]
    [Google Scholar]
  28. Møller T, Franch T, Udesen C, Gerdes K, Valentin-Hansen P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 2002;16:1696–1706 [CrossRef][PubMed]
    [Google Scholar]
  29. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003;27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  30. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007;71:413–451 [CrossRef][PubMed]
    [Google Scholar]
  31. Barasch J, Mori K. Cell biology: iron thievery. Nature 2004;432:811–813 [CrossRef][PubMed]
    [Google Scholar]
  32. Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol 2004;2:946–953 [CrossRef][PubMed]
    [Google Scholar]
  33. Braun V. Bacterial iron transport related to virulence. Contrib Microbiol 2005;12:210–233 [CrossRef][PubMed]
    [Google Scholar]
  34. Massé E, Vanderpool CK, Gottesman S. Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 2005;187:6962–6971 [CrossRef][PubMed]
    [Google Scholar]
  35. Gottesman S, Mccullen CA, Guillier M, Vanderpool CK, Majdalani N et al. Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 2006;71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  36. Wilderman PJ, Sowa NA, Fitzgerald DJ, Fitzgerald PC, Gottesman S et al. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 2004;101:9792–9797 [CrossRef][PubMed]
    [Google Scholar]
  37. Jung YS, Kwon YM. Small RNA ArrF regulates the expression of sodB and feSII genes in Azotobacter vinelandii. Curr Microbiol 2008;57:593–597 [CrossRef][PubMed]
    [Google Scholar]
  38. Ducey TF, Jackson L, Orvis J, Dyer DW. Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae. Microb Pathog 2009;46:166–170 [CrossRef][PubMed]
    [Google Scholar]
  39. Jackson LA, Pan JC, Day MW, Dyer DW. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J Bacteriol 2013;195:5166–5173 [CrossRef][PubMed]
    [Google Scholar]
  40. Metruccio MM, Fantappiè L, Serruto D, Muzzi A, Roncarati D et al. The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J Bacteriol 2009;191:1330–1342 [CrossRef][PubMed]
    [Google Scholar]
  41. Lefebre M, Valvano M. In vitro resistance of Burkholderia cepacia complex isolates to reactive oxygen species in relation to catalase and superoxide dismutase production. Microbiology 2001;147:97–109 [CrossRef][PubMed]
    [Google Scholar]
  42. Gerstle K, Klätschke K, Hahn U, Piganeau N. The small RNA RybA regulates key-genes in the biosynthesis of aromatic amino acids under peroxide stress in E. coli. RNA Biol 2012;9:458–468 [CrossRef][PubMed]
    [Google Scholar]
  43. Balbontín R, Villagra N, Pardos de La Gándara M, Mora G, Figueroa-Bossi N et al. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Mol Microbiol 2016;100:139–155 [CrossRef][PubMed]
    [Google Scholar]
  44. Billenkamp F, Peng T, Berghoff BA, Klug G. A cluster of four homologous small RNAs modulates C1 metabolism and the pyruvate dehydrogenase complex in Rhodobacter sphaeroides under various stress conditions. J Bacteriol 2015;197:1839–1852 [CrossRef][PubMed]
    [Google Scholar]
  45. Vanlaere E, Baldwin A, Gevers D, Henry D, de Brandt E et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 2009;59:102–111 [CrossRef][PubMed]
    [Google Scholar]
  46. Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2010;16:821–830 [CrossRef][PubMed]
    [Google Scholar]
  47. Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005;3:144–156 [CrossRef][PubMed]
    [Google Scholar]
  48. Leitão JH, Sousa SA, Cunha MV, Salgado MJ, Melo-Cristino J et al. Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center. Eur J Clin Microbiol Infect Dis 2008;27:1101–1111 [CrossRef][PubMed]
    [Google Scholar]
  49. Leitão JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN et al. Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010;87:31–40 [CrossRef][PubMed]
    [Google Scholar]
  50. Coenye T, Drevinek P, Mahenthiralingam E, Shah SA, Gill RT et al. Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome. FEMS Microbiol Lett 2007;276:83–92 [CrossRef][PubMed]
    [Google Scholar]
  51. Coenye T, van Acker H, Peeters E, Sass A, Buroni S et al. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob Agents Chemother 2011;55:1912–1919 [CrossRef][PubMed]
    [Google Scholar]
  52. Ramos CG, Grilo AM, da Costa PJ, Leitão JH. Experimental identification of small non-coding regulatory RNAs in the opportunistic human pathogen Burkholderia cenocepacia J2315. Genomics 2013;101:139–148 [CrossRef][PubMed]
    [Google Scholar]
  53. Sass AM, van Acker H, Förstner KU, van Nieuwerburgh F, Deforce D et al. Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315. BMC Genomics 2015;16:775 [CrossRef][PubMed]
    [Google Scholar]
  54. Livny J, Teonadi H, Livny M, Waldor MK. High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS One 2008;3:e3197 [CrossRef][PubMed]
    [Google Scholar]
  55. Massé E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 2002;99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  56. Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008;24:2849–2856 [CrossRef][PubMed]
    [Google Scholar]
  57. Kery MB, Feldman M, Livny J, Tjaden B. TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 2014;42:W124–W129 [CrossRef][PubMed]
    [Google Scholar]
  58. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  59. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res 2003;31:439–441 [CrossRef][PubMed]
    [Google Scholar]
  60. Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M. Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs. BMC Genomics 2012;13:S13 [CrossRef][PubMed]
    [Google Scholar]
  61. Li L, Huang D, Cheung MK, Nong W, Huang Q et al. BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res 2013;41:D233–D238 [CrossRef][PubMed]
    [Google Scholar]
  62. Yang J, Tan G, Zhang T, White RH, Lu J et al. Deletion of the proposed iron chaperones IscA/SufA results in accumulation of a red intermediate cysteine desulfurase IscS in Escherichia coli. J Biol Chem 2015;290:14226–14234 [CrossRef][PubMed]
    [Google Scholar]
  63. Caruthers J, Zucker F, Worthey E, Myler PJ, Buckner F et al. Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Protein Sci 2005;14:2887–2894 [CrossRef][PubMed]
    [Google Scholar]
  64. Pomposiello PJ, Demple B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 2001;19:109–114 [CrossRef][PubMed]
    [Google Scholar]
  65. Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. Plant Signal Behav 2011;6:1195–1197 [CrossRef][PubMed]
    [Google Scholar]
  66. Persson BC, Esberg B, Olafsson O, Björk GR. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 1994;76:1152–1160 [CrossRef][PubMed]
    [Google Scholar]
  67. Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 2014;40:207–224 [CrossRef][PubMed]
    [Google Scholar]
  68. Feng B, Mandava CS, Guo Q, Wang J, Cao W et al. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol 2014;12:e1001866 [CrossRef][PubMed]
    [Google Scholar]
  69. Moreno R, Fonseca P, Rojo F. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol 2012;83:24–40 [CrossRef][PubMed]
    [Google Scholar]
  70. Pannuri A, Vakulskas CA, Zere T, Mcgibbon LC, Edwards AN et al. Circuitry linking the catabolite repression and csr global regulatory systems of Escherichia coli. J Bacteriol 2016;198:3000–3015 [CrossRef][PubMed]
    [Google Scholar]
  71. Fiore JL, Nesbitt DJ. An RNA folding motif: GNRA tetraloop-receptor interactions. Q Rev Biophys 2013;46:223–264 [CrossRef][PubMed]
    [Google Scholar]
  72. Moore SD, Sauer RT. The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 2007;76:101–124 [CrossRef][PubMed]
    [Google Scholar]
  73. Keiler KC. Biology of trans-translation. Annu Rev Microbiol 2008;62:133–151 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000566
Loading
/content/journal/micro/10.1099/mic.0.000566
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error