1887

Abstract

The Escherichia coli PhoB-PhoR two-component system responds to phosphate starvation and induces the expression of many genes. Previous studies suggested that phosphate starvation induces oxidative stress, but the involvement of the PhoB regulon in oxidative stress tolerance has not been clarified. Here, we showed that ytfK, one of the PhoB regulon genes, is involved in cell tolerance to a redox-cycling drug, menadione, and H2O2 in stationary-phase cells. A ytfK deletion mutant was sensitive to H2O2 when the cells were grown anaerobically or micro-aerobically in the presence of nitrate. Genetic analysis suggested that the ytfK gene has a functional relationship with the oxyR and fur genes, among the oxyR regulon, at least, a catalase-encoding katG gene and peroxidase-encoding ahpCF genes. Overproduction of YtfK resulted in a KatG-dependent decrease of H2O2 concentration in the cell suspension, suggesting that katG is one of the targets of YtfK. Using a katG′-lacZ reporter fusion, we showed that YtfK enhances the transcription of katG although it was not clarified whether YtfK functions directly or not. We also showed that ytfK disruption results in reduced viability of stationary-phase cells under phosphate starvation. These results indicated that YtfK is involved in H2O2 tolerance by stimulating directly or indirectly the transcription of at least the catalase gene, and that this system plays an important role in cellular survival during phosphate starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000534
2017-11-17
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1912.html?itemId=/content/journal/micro/10.1099/mic.0.000534&mimeType=html&fmt=ahah

References

  1. Richards GR, Vanderpool CK. Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response. J Bacteriol 2012; 194: 2520– 2530 [CrossRef] [PubMed]
    [Google Scholar]
  2. Wanner BL. Gene regulation by phosphate in enteric bacteria. J Cell Biochem 1993; 51: 47– 54 [CrossRef] [PubMed]
    [Google Scholar]
  3. Foster JW, Spector MP. How Salmonella survive against the odds. Annu Rev Microbiol 1995; 49: 145– 174 [CrossRef] [PubMed]
    [Google Scholar]
  4. Hsieh YJ, Wanner BL. Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 2010; 13: 198– 203 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yang C, Huang TW, Wen SY, Chang CY, Tsai SF et al. Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. PLoS One 2012; 7: e47314 [CrossRef] [PubMed]
    [Google Scholar]
  6. Han JS, Park JY, Lee YS, Thöny B, Hwang DS. PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli. Mol Gen Genet 1999; 262: 448– 452 [PubMed] [Crossref]
    [Google Scholar]
  7. Suziedeliené E, Suziedélis K, Garbenciūté V, Normark S. The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J Bacteriol 1999; 181: 2084– 2093 [PubMed]
    [Google Scholar]
  8. Harris RM, Webb DC, Howitt SM, Cox GB. Characterization of PitA and PitB from Escherichia coli. J Bacteriol 2001; 183: 5008– 5014 [CrossRef] [PubMed]
    [Google Scholar]
  9. Torriani A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta 1960; 38: 460– 469 [CrossRef] [PubMed]
    [Google Scholar]
  10. Torriani A. From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. Bioessays 1990; 12: 371– 376 [CrossRef] [PubMed]
    [Google Scholar]
  11. Leung HB, Kvalnes-Krick KL, Meyer SL, Deriel JK, Schramm VL. Structure and regulation of the AMP nucleosidase gene (amn) from Escherichia coli. Biochemistry 1989; 28: 8726– 8733 [CrossRef] [PubMed]
    [Google Scholar]
  12. Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 2003; 185: 3804– 3812 [CrossRef] [PubMed]
    [Google Scholar]
  13. Klein G, Müller-Loennies S, Lindner B, Kobylak N, Brade H et al. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J Biol Chem 2013; 288: 8111– 8127 [CrossRef] [PubMed]
    [Google Scholar]
  14. Moreau PL, Gérard F, Lutz NW, Cozzone P. Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol Microbiol 2001; 39: 1048– 1060 [CrossRef] [PubMed]
    [Google Scholar]
  15. Moreau PL. Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions. J Bacteriol 2004; 186: 7364– 7368 [CrossRef] [PubMed]
    [Google Scholar]
  16. Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 1991; 266: 6957– 6965 [PubMed]
    [Google Scholar]
  17. Messner KR, Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain. J Biol Chem 1999; 274: 10119– 10128 [Crossref]
    [Google Scholar]
  18. Imlay JA. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem 1995; 270: 19767– 19777 [PubMed]
    [Google Scholar]
  19. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2004; 2: 820– 832 [CrossRef] [PubMed]
    [Google Scholar]
  20. Wakimoto S, Nakayama-Imaohji H, Ichimura M, Morita H, Hirakawa H et al. PhoB regulates the survival of Bacteroides fragilis in peritoneal abscesses. PLoS One 2013; 8: e53829 [CrossRef] [PubMed]
    [Google Scholar]
  21. Chekabab SM, Harel J, Dozois CM. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 2014; 5: 786– 793 [CrossRef] [PubMed]
    [Google Scholar]
  22. Chekabab SM, Jubelin G, Dozois CM, Harel J. PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation. PLoS One 2014; 9: e94285 [CrossRef] [PubMed]
    [Google Scholar]
  23. Zheng M, Wang X, Templeton LJ, Smulski DR, Larossa RA et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 2001; 183: 4562– 4570 [CrossRef] [PubMed]
    [Google Scholar]
  24. Baek JH, Lee SY. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol Lett 2006; 264: 104– 109 [CrossRef] [PubMed]
    [Google Scholar]
  25. Yoshida Y, Sugiyama S, Oyamada T, Yokoyama K, Kim SK et al. Identification of PhoB binding sites of the yibD and ytfK promoter regions in Escherichia coli. J Microbiol 2011; 49: 285– 289 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lacour S, Landini P. σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J Bacteriol 2004; 186: 7186– 7195 [CrossRef] [PubMed]
    [Google Scholar]
  27. Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 1978; 134: 1141– 1156 [PubMed]
    [Google Scholar]
  28. Kato J, Ikeda H. Construction of mini-F plasmid vectors for plasmid shuffling in Escherichia coli. Gene 1996; 170: 141– 142 [CrossRef] [PubMed]
    [Google Scholar]
  29. Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 1994; 233: 182– 189 [Crossref]
    [Google Scholar]
  30. Miller JH. Experiments in molecular genetics Cold Spring Harb NY: Cold Spring Harb Lab; 1972
    [Google Scholar]
  31. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol 1974; 119: 736– 747 [PubMed]
    [Google Scholar]
  32. Pomposiello PJ, Bennik MH, Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 2001; 183: 3890– 3902 [CrossRef] [PubMed]
    [Google Scholar]
  33. Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003; 48: 253– 267 [CrossRef] [PubMed]
    [Google Scholar]
  34. Bjarnason J, Southward CM, Surette MG. Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 2003; 185: 4973– 4982 [CrossRef] [PubMed]
    [Google Scholar]
  35. Hassan HM, Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 1979; 196: 385– 395 [CrossRef] [PubMed]
    [Google Scholar]
  36. St John G, Brot N, Ruan J, Erdjument-Bromage H, Tempst P et al. Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci USA 2001; 98: 9901– 9906 [CrossRef] [PubMed]
    [Google Scholar]
  37. Justino MC, Vicente JB, Teixeira M, Saraiva LM. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 2005; 280: 2636– 2643 [CrossRef] [PubMed]
    [Google Scholar]
  38. Justino MC, Almeida CC, Teixeira M, Saraiva LM. Escherichia coli Di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem 2007; 282: 10352– 10359 [CrossRef] [PubMed]
    [Google Scholar]
  39. Vine CE, Cole JA. Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress. FEMS Microbiol Lett 2011; 325: 99– 107 [CrossRef] [PubMed]
    [Google Scholar]
  40. Woodmansee AN, Imlay JA. A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli. Mol Microbiol 2003; 49: 11– 22 [CrossRef] [PubMed]
    [Google Scholar]
  41. Korshunov S, Imlay JA. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol 2010; 75: 1389– 1401 [CrossRef] [PubMed]
    [Google Scholar]
  42. Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 1991; 266: 19328– 19333 [PubMed]
    [Google Scholar]
  43. Pan N, Imlay JA. How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron. Mol Microbiol 2001; 39: 1562– 1571 [CrossRef] [PubMed]
    [Google Scholar]
  44. Partridge JD, Poole RK, Green J. The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. Microbiology 2007; 153: 1499– 1509 [CrossRef] [PubMed]
    [Google Scholar]
  45. Lacey MM, Partridge JD, Green J. Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. Microbiology 2010; 156: 2873– 2886 [CrossRef] [PubMed]
    [Google Scholar]
  46. Storz G, Tartaglia LA, Ames BN. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 1990; 248: 189– 194 [CrossRef] [PubMed]
    [Google Scholar]
  47. Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 1998; 279: 1718– 1722 [CrossRef] [PubMed]
    [Google Scholar]
  48. Liu Y, Bauer SC, Imlay JA. The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. J Bacteriol 2011; 193: 2186– 2196 [CrossRef] [PubMed]
    [Google Scholar]
  49. Park S, You X, Imlay JA. Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proc Natl Acad Sci USA 2005; 102: 9317– 9322 [CrossRef] [PubMed]
    [Google Scholar]
  50. Christman MF, Morgan RW, Jacobson FS, Ames BN. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 1985; 41: 753– 762 [CrossRef] [PubMed]
    [Google Scholar]
  51. Bagg A, Neilands JB. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 1987; 26: 5471– 5477 [CrossRef] [PubMed]
    [Google Scholar]
  52. Zheng M, Doan B, Schneider TD, Storz G. OxyR and SoxRS regulation of fur. J Bacteriol 1999; 181: 4639– 4643 [PubMed]
    [Google Scholar]
  53. Loewen PC, Triggs BL, George CS, Hrabarchuk BE. Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli. J Bacteriol 1985; 162: 661– 667 [PubMed]
    [Google Scholar]
  54. Hoerter JD, Arnold AA, Ward CS, Sauer M, Johnson S et al. Reduced hydroperoxidase (HPI and HPII) activity in the Δfur mutant contributes to increased sensitivity to UVA radiation in Escherichia coli. J Photochem Photobiol B 2005; 79: 151– 157 [CrossRef] [PubMed]
    [Google Scholar]
  55. Loewen PC, Switala J. Purification and characterization of catalase HPII from Escherichia coli K12. Biochem Cell Biol 1986; 64: 638– 646 [CrossRef] [PubMed]
    [Google Scholar]
  56. Seaver LC, Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 2001; 183: 7173– 7181 [CrossRef] [PubMed]
    [Google Scholar]
  57. Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R et al. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun 2014; 5: 4910 [CrossRef] [PubMed]
    [Google Scholar]
  58. Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 2001; 183: 7182– 7189 [CrossRef] [PubMed]
    [Google Scholar]
  59. Hughes MN, Poole RK. Metal speciation and microbial growth-the hard (and soft) facts. J Gen Microbiol 1991; 137: 725– 734 [CrossRef]
    [Google Scholar]
  60. Lee LJ, Barrett JA, Poole RK. Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 2005; 187: 1124– 1134 [CrossRef] [PubMed]
    [Google Scholar]
  61. Brocklehurst KR, Morby AP. Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiology 2000; 146: 2277– 2282 [CrossRef] [PubMed]
    [Google Scholar]
  62. Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 2004; 14: 28– 35 [CrossRef] [PubMed]
    [Google Scholar]
  63. Paytubi S, Madrid C, Forns N, Nieto JM, Balsalobre C et al. YdgT, the Hha paralogue in Escherichia coli, forms heteromeric complexes with H-NS and StpA. Mol Microbiol 2004; 54: 251– 263 [CrossRef] [PubMed]
    [Google Scholar]
  64. Mclean S, Bowman LA, Sanguinetti G, Read RC, Poole RK. Peroxynitrite toxicity in Escherichia coli K12 elicits expression of oxidative stress responses and protein nitration and nitrosylation. J Biol Chem 2010; 285: 20724– 20731 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000534
Loading
/content/journal/micro/10.1099/mic.0.000534
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error