1887

Abstract

Mycobacterium abscessus is a fast-growing environmental organism and an important emerging pathogen. It is highly resistant to many antibiotics and undergoes a smooth to rough colony morphology change that appears to be important for pathogenesis. Smooth environmental strains have a glycopeptidolipid (GPL) on the surface, while certain types of clinical strains are often rough and lack this GPL, due to mutations in biosynthetic genes or the mmpL4b transporter gene. We report here the development and evaluation of an allelic exchange system for unmarked alleles in M. abscessus ATCC19977, using a suicide vector bearing the E. coli galK gene and 2-deoxygalactose counterselection. We describe here two variant galK suicide vectors, and demonstrate their utility in constructing a variety of mutants with deletion alleles of the mmpL4b GPL transporter gene, the mbtH GPL biosynthesis gene, the known β-lactamase gene MAB_2875 and a putative β-lactamase gene, MAB_2833. We also show that a novel allele of the E. coli aacC4 gene, conferring apramycin resistance (aacC41), can be used as a selectable marker in M. abscessus ATCC19977 at single copy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000528
2017-09-21
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/10/1399.html?itemId=/content/journal/micro/10.1099/mic.0.000528&mimeType=html&fmt=ahah

References

  1. Saleeb P, Olivier KN. Pulmonary nontuberculous mycobacterial disease: new insights into risk factors for susceptibility, epidemiology, and approaches to management in immunocompetent and immunocompromised patients. Curr Infect Dis Rep 2010; 12: 198– 203 [CrossRef] [PubMed]
    [Google Scholar]
  2. Chan ED, Bai X, Kartalija M, Orme IM, Ordway DJ. Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am J Respir Cell Mol Biol 2010; 43: 387– 393 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kendall BA, Winthrop KL. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin Respir Crit Care Med 2013; 34: 87– 94 [CrossRef] [PubMed]
    [Google Scholar]
  4. Besada E. Rapid growing mycobacteria and TNF-α blockers: case report of a fatal lung infection with Mycobacterium abscessus in a patient treated with infliximab, and literature review. Clin Exp Rheumatol 2011; 29: 705– 707 [PubMed]
    [Google Scholar]
  5. Jönsson BE, Gilljam M, Lindblad A, Ridell M, Wold AE et al. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J Clin Microbiol 2007; 45: 1497– 1504 [CrossRef] [PubMed]
    [Google Scholar]
  6. Sanguinetti M, Ardito F, Fiscarelli E, La Sorda M, D'Argenio P et al. Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus in a patient with cystic fibrosis. J Clin Microbiol 2001; 39: 816– 819 [CrossRef] [PubMed]
    [Google Scholar]
  7. Winthrop KL, Chang E, Yamashita S, Iademarco MF, Lobue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-α therapy. Emerg Infect Dis 2009; 15: 1556– 1561 [CrossRef] [PubMed]
    [Google Scholar]
  8. Malcolm KC, Nichols EM, Caceres SM, Kret JE, Martiniano SL et al. Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS One 2013; 8: e57402 [CrossRef] [PubMed]
    [Google Scholar]
  9. Nessar R, Reyrat JM, Davidson LB, Byrd TF. Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 2011; 157: 1187– 1195 [CrossRef] [PubMed]
    [Google Scholar]
  10. Roux AL, Ray A, Pawlik A, Medjahed H, Etienne G et al. Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants. Cell Microbiol 2011; 13: 692– 704 [CrossRef] [PubMed]
    [Google Scholar]
  11. Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol 2013; 90: 612– 629 [CrossRef] [PubMed]
    [Google Scholar]
  12. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 2012; 67: 810– 818 [CrossRef] [PubMed]
    [Google Scholar]
  13. Bardarov S, Bardarov S, Pavelka MS, Sambandamurthy V, Larsen M et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 2002; 148: 3007– 3017 [CrossRef] [PubMed]
    [Google Scholar]
  14. Pavelka MS, Jacobs WR. Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guérin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 1999; 181: 4780– 4789 [PubMed]
    [Google Scholar]
  15. van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods 2007; 4: 147– 152 [CrossRef] [PubMed]
    [Google Scholar]
  16. Medjahed H, Reyrat JM. Construction of Mycobacterium abscessus defined glycopeptidolipid mutants: comparison of genetic tools. Appl Environ Microbiol 2009; 75: 1331– 1338 [CrossRef] [PubMed]
    [Google Scholar]
  17. Choi GE, Shin SJ, Won CJ, Min KN, Oh T et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med 2012; 186: 917– 925 [CrossRef] [PubMed]
    [Google Scholar]
  18. Dubée V, Bernut A, Cortes M, Lesne T, Dorchene D et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother 2015; 70: 1051– 1058 [CrossRef] [PubMed]
    [Google Scholar]
  19. Martinelli DJ, Pavelka MS. The RipA and RipB peptidoglycan endopeptidases are individually nonessential to Mycobacterium smegmatis. J Bacteriol 2016; 198: 1464– 1475 [CrossRef] [PubMed]
    [Google Scholar]
  20. Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 2017; 72: 376– 384 [CrossRef] [PubMed]
    [Google Scholar]
  21. Alper MD, Ames BN. Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J Bacteriol 1975; 121: 259– 266 [PubMed]
    [Google Scholar]
  22. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Current Protocols in Molecular Biology New York: Greene Publishing Associates and Wiley-Interscience; 1987
    [Google Scholar]
  23. Pavelka MS, Jacobs WR. Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J Bacteriol 1996; 178: 6496– 6507 [CrossRef] [PubMed]
    [Google Scholar]
  24. Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009; 4: e5660 [CrossRef] [PubMed]
    [Google Scholar]
  25. Consaul SA, Pavelka MS. Use of a novel allele of the Escherichia coli aacC4 aminoglycoside resistance gene as a genetic marker in mycobacteria. FEMS Microbiol Lett 2004; 234: 297– 301 [CrossRef] [PubMed]
    [Google Scholar]
  26. Li G, Lian LL, Wan L, Zhang J, Zhao X et al. Antimicrobial susceptibility of standard strains of nontuberculous mycobacteria by microplate alamar blue assay. PLoS One 2013; 8: e84065 [CrossRef] [PubMed]
    [Google Scholar]
  27. Barkan D, Stallings CL, Glickman MS. An improved counterselectable marker system for mycobacterial recombination using galK and 2-deoxy-galactose. Gene 2011; 470: 31– 36 [CrossRef] [PubMed]
    [Google Scholar]
  28. Pelicic V, Jackson M, Reyrat JM, Jacobs WR, Gicquel B et al. Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1997; 94: 10955– 10960 [CrossRef] [PubMed]
    [Google Scholar]
  29. Sander P, Meier A, Böttger EC. rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 1995; 16: 991– 1000 [CrossRef] [PubMed]
    [Google Scholar]
  30. Ripoll F, Deshayes C, Pasek S, Laval F, Beretti JL et al. Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC Genomics 2007; 8: 114 [CrossRef] [PubMed]
    [Google Scholar]
  31. Hinds J, Mahenthiralingam E, Kempsell KE, Duncan K, Stokes RW et al. Enhanced gene replacement in mycobacteria. Microbiology 1999; 145: 519– 527 [CrossRef] [PubMed]
    [Google Scholar]
  32. Flores AR, Parsons LM, Pavelka MS. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology 2005; 151: 521– 532 [CrossRef] [PubMed]
    [Google Scholar]
  33. Brown-Elliott BA, Wallace RJ. Rapidly growing myobacteria. In Schlossberg D. (editor) Tuberculosis and Nontuberculous Mycobacterial Infections Washingron, DC: ASM Press; 2011; pp. 565– 577 [Crossref]
    [Google Scholar]
  34. Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC et al. Updating and curating metabolic pathways of TB. Tuberculosis 2013; 93: 47– 59 [CrossRef] [PubMed]
    [Google Scholar]
  35. Galleni M, Raquet X, Lamotte-Brasseur J, Fonzé E, Amicosante G et al. DD-peptidases and β-lactamases: catalytic mechanisms and specificities. J Chemother 1995; 7: 3– 7 [CrossRef] [PubMed]
    [Google Scholar]
  36. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 1990; 4: 1911– 1919 [CrossRef] [PubMed]
    [Google Scholar]
  37. Stover CK, de La Cruz VF, Fuerst TR, Burlein JE, Benson LA et al. New use of BCG for recombinant vaccines. Nature 1991; 351: 456– 460 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000528
Loading
/content/journal/micro/10.1099/mic.0.000528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error