1887

Abstract

Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000523
2017-09-12
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/10/1371.html?itemId=/content/journal/micro/10.1099/mic.0.000523&mimeType=html&fmt=ahah

References

  1. Vaneechoutte M, Verschraegen G, Claeys G, Weise B, van den Abeele AM. Respiratory tract carrier rates of Moraxella (Branhamella) catarrhalis in adults and children and interpretation of the isolation of M. catarrhalis from sputum. J Clin Microbiol 1990; 28: 2674– 2680 [PubMed]
    [Google Scholar]
  2. Murphy TF, Parameswaran GI. Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 2009; 49: 124– 131 [CrossRef] [PubMed]
    [Google Scholar]
  3. Ngo CC, Massa HM, Thornton RB, Cripps AW. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS One 2016; 11: e0150949 [CrossRef] [PubMed]
    [Google Scholar]
  4. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 2008; 359: 2355– 2365 [CrossRef] [PubMed]
    [Google Scholar]
  5. Verduin CM, Hol C, Fleer A, van Dijk H, van Belkum A. Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 2002; 15: 125– 144 [CrossRef] [PubMed]
    [Google Scholar]
  6. Ren D, Pichichero ME. Vaccine targets against Moraxella catarrhalis. Expert Opin Ther Targets 2016; 20: 19– 33 [CrossRef] [PubMed]
    [Google Scholar]
  7. Perez AC, Murphy TF. Do we need a vaccine against Moraxella catarrhalis in chronic lung disease? What are the options and opportunities?. Vaccine 2017; Epub ahead of print
    [Google Scholar]
  8. Gisselsson-Solén M, Henriksson G, Hermansson A, Melhus A. Risk factors for carriage of AOM pathogens during the first 3 years of life in children with early onset of acute otitis media. Acta Otolaryngol 2014; 134: 684– 690 [CrossRef] [PubMed]
    [Google Scholar]
  9. Atkinson H, Wallis S, Coatesworth AP. Acute otitis media. Postgrad Med 2015; 127: 386– 390 [CrossRef] [PubMed]
    [Google Scholar]
  10. Atkinson H, Wallis S, Coatesworth AP. Otitis media with effusion. Postgrad Med 2015; 127: 381– 385 [CrossRef] [PubMed]
    [Google Scholar]
  11. Watson DS, Clapin M. Ear health of aboriginal primary school children in the Eastern goldfields region of Western Australia. Aust J Public Health 1992; 16: 26– 30 [CrossRef] [PubMed]
    [Google Scholar]
  12. Lehmann D, Weeks S, Jacoby P, Elsbury D, Finucane J et al. Absent otoacoustic emissions predict otitis media in young aboriginal children: a birth cohort study in aboriginal and non-aboriginal children in an arid zone of Western Australia. BMC Pediatr 2008; 8: 32 [CrossRef] [PubMed]
    [Google Scholar]
  13. Teele DW, Klein JO, Chase C, Menyuk P, Rosner BA. Otitis media in infancy and intellectual ability, school achievement, speech, and language at age 7 years. Greater boston otitis media study group. J Infect Dis 1990; 162: 685– 694 [PubMed] [Crossref]
    [Google Scholar]
  14. Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L et al. Burden of disease caused by otitis media: systematic review and global estimates. PLoS One 2012; 7: e36226 [CrossRef] [PubMed]
    [Google Scholar]
  15. Boswell JB, Nienhuys TG. Onset of otitis media in the first eight weeks of life in aboriginal and non-aboriginal Australian infants. Ann Otol Rhinol Laryngol 1995; 104: 542– 549 [CrossRef] [PubMed]
    [Google Scholar]
  16. Freid VM, Makuc DM, Rooks RN. Ambulatory health care visits by children: principal diagnosis and place of visit. Vital Health Stat 1998; 13: 1– 23
    [Google Scholar]
  17. Gonzales R, Malone DC, Maselli JH, Sande MA. Excessive antibiotic use for acute respiratory infections in the United States. Clin Infect Dis 2001; 33: 757– 762 [CrossRef] [PubMed]
    [Google Scholar]
  18. Owings MF, Kozak LJ. Ambulatory and inpatient procedures in the United States, 1996. Vital Health Stat 1998; 13: 1– 119
    [Google Scholar]
  19. Bakaletz LO. Immunopathogenesis of polymicrobial otitis media. J Leukoc Biol 2010; 87: 213– 222 [CrossRef] [PubMed]
    [Google Scholar]
  20. Pettigrew MM, Alderson MR, Bakaletz LO, Barenkamp SJ, Hakansson AP et al. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2017; 156: S76– S87 [CrossRef] [PubMed]
    [Google Scholar]
  21. Sillanpää S, Oikarinen S, Sipilä M, Kramna L, Rautiainen M et al. Moraxella catarrhalis might be more common than expected in acute otitis media in young finnish children. J Clin Microbiol 2016; 54: 2373– 2379 [CrossRef] [PubMed]
    [Google Scholar]
  22. Broides A, Dagan R, Greenberg D, Givon-Lavi N, Leibovitz E. Acute otitis media caused by Moraxella catarrhalis: epidemiologic and clinical characteristics. Clin Infect Dis 2009; 49: 1641– 1647 [CrossRef] [PubMed]
    [Google Scholar]
  23. Ruohola A, Pettigrew MM, Lindholm L, Jalava J, Räisänen KS et al. bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. J Infect 2013; 66: 247– 254 [CrossRef] [PubMed]
    [Google Scholar]
  24. Krishnamurthy A, Mcgrath J, Cripps AW, Kyd JM. The incidence of Streptococcus pneumoniae otitis media is affected by the polymicrobial environment particularly Moraxella catarrhalis in a mouse nasal colonisation model. Microbes Infect 2009; 11: 545– 553 [CrossRef] [PubMed]
    [Google Scholar]
  25. Perez AC, Pang B, King LB, Tan L, Murrah KA et al. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog Dis 2014; 70: 280– 288 [CrossRef] [PubMed]
    [Google Scholar]
  26. Thornton RB, Wiertsema SP, Kirkham LA, Rigby PJ, Vijayasekaran S et al. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media – a potential treatment target. PLoS One 2013; 8: e53837 [CrossRef] [PubMed]
    [Google Scholar]
  27. Budhani RK, Struthers JK. Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role of β-lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob Agents Chemother 1998; 42: 2521– 2526 [PubMed]
    [Google Scholar]
  28. Armbruster CE, Hong W, Pang B, Weimer KE, Juneau RA et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio 2010; 1: e00102-10 e00102-19 [CrossRef] [PubMed]
    [Google Scholar]
  29. Schaar V, Nordström T, Mörgelin M, Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 2011; 55: 3845– 3853 [CrossRef] [PubMed]
    [Google Scholar]
  30. Tan TT, Morgelin M, Forsgren A, Riesbeck K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 2007; 195: 1661– 1670 [CrossRef] [PubMed]
    [Google Scholar]
  31. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187: 347– 365 [CrossRef] [PubMed]
    [Google Scholar]
  32. World Health Organization 2012; The top 10 causes of death (Fact sheet No. 310). Accessed www.who.int/mediacentre/factsheets/fs310/en/
  33. Sethi S, Murphy TF. Acute exacerbations of chronic bronchitis: new developments concerning microbiology and pathophysiology—impact on approaches to risk stratification and therapy. Infect Dis Clin North Am 2004; 18: 861– 882 [CrossRef] [PubMed]
    [Google Scholar]
  34. Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57: 847– 852 [CrossRef] [PubMed]
    [Google Scholar]
  35. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ et al. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 157: 1418– 1422 [CrossRef] [PubMed]
    [Google Scholar]
  36. Suissa S, Dell'Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2012; 67: 957– 963 [CrossRef] [PubMed]
    [Google Scholar]
  37. Murphy TF, Brauer AL, Grant BJ, Sethi S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Respir Crit Care Med 2005; 172: 195– 199 [CrossRef] [PubMed]
    [Google Scholar]
  38. Barker BL, Haldar K, Patel H, Pavord ID, Barer MR et al. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest 2015; 147: 46– 55 [CrossRef] [PubMed]
    [Google Scholar]
  39. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347: 465– 471 [CrossRef] [PubMed]
    [Google Scholar]
  40. Sethi S, Wrona C, Eschberger K, Lobbins P, Cai X et al. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177: 491– 497 [CrossRef] [PubMed]
    [Google Scholar]
  41. Stockley RA. Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med 1999; 160: S49– S52 [CrossRef] [PubMed]
    [Google Scholar]
  42. Chin CL, Manzel LJ, Lehman EE, Humlicek AL, Shi L et al. Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. Am J Respir Crit Care Med 2005; 172: 85– 91 [CrossRef] [PubMed]
    [Google Scholar]
  43. Venekamp RP, Sanders SL, Glasziou PP, del Mar CB, Rovers MM. Antibiotics for acute otitis media in children. Cochrane Database Syst Rev 2015; CD000219 [CrossRef] [PubMed]
    [Google Scholar]
  44. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006; 296: 202– 211 [CrossRef] [PubMed]
    [Google Scholar]
  45. Belfield K, Bayston R, Birchall JP, Daniel M. Do orally administered antibiotics reach concentrations in the middle ear sufficient to eradicate planktonic and biofilm bacteria? A review. Int J Pediatr Otorhinolaryngol 2015; 79: 296– 300 [CrossRef] [PubMed]
    [Google Scholar]
  46. Kaur R, Casey JR, Pichichero ME. Relationship with original pathogen in recurrence of acute otitis media after completion of amoxicillin/clavulanate: bacterial relapse or new pathogen. Pediatr Infect Dis J 2013; 32: 1159– 1162 [CrossRef] [PubMed]
    [Google Scholar]
  47. Vollenweider DJ, Jarrett H, Steurer-Stey CA, Garcia-Aymerich J, Puhan MA. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 12: Cd010257 [CrossRef] [PubMed]
    [Google Scholar]
  48. Desai H, Richter S, Doern G, Heilmann K, Dohrn C et al. Antibiotic resistance in sputum isolates of Streptococcus pneumoniae in chronic obstructive pulmonary disease is related to antibiotic exposure. COPD 2010; 7: 337– 344 [CrossRef] [PubMed]
    [Google Scholar]
  49. Pingault NM, Bowman JM, Lehmann D, Riley TV. Antimicrobial susceptibility of Moraxella catarrhalis isolated from children in Kalgoorlie-Boulder, Western Australia. Pathology 2010; 42: 273– 279 [CrossRef] [PubMed]
    [Google Scholar]
  50. Bandet T, Whitehead S, Blondel-Hill E, Wagner K, Cheeptham N. Susceptibility of clinical Moraxella catarrhalis isolates in British Columbia to six empirically prescribed antibiotic agents. Can J Infect Dis Med Microbiol 2014; 25: 155– 158 [PubMed]
    [Google Scholar]
  51. Lau WC, Murray M, El-Turki A, Saxena S, Ladhani S et al. Impact of pneumococcal conjugate vaccines on childhood otitis media in the United Kingdom. Vaccine 2015; 33: 5072– 5079 [CrossRef] [PubMed]
    [Google Scholar]
  52. Taylor S, Marchisio P, Vergison A, Harriague J, Hausdorff WP et al. Impact of pneumococcal conjugate vaccination on otitis media: a systematic review. Clin Infect Dis 2012; 54: 1765– 1773 [CrossRef] [PubMed]
    [Google Scholar]
  53. Dagan R, Pelton S, Bakaletz L, Cohen R. Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. Lancet Infect Dis 2016; 16: 480– 492 [CrossRef] [PubMed]
    [Google Scholar]
  54. Clancy RL, Dunkley ML, Sockler J, McDonald CF. Multi-site placebo-controlled randomised clinical trial to assess protection following oral immunisation with inactivated non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Intern Med J 2016; 46: 684– 693 [CrossRef] [PubMed]
    [Google Scholar]
  55. Bootsma HJ, van der Heide HG, van de Pas S, Schouls LM, Mooi FR. Analysis of Moraxella catarrhalis by DNA typing: evidence for a distinct subpopulation associated with virulence traits. J Infect Dis 2000; 181: 1376– 1387 [CrossRef] [PubMed]
    [Google Scholar]
  56. El-Ahmer OR, Braun JM, Amyes SG, Weir DM, Beuth J et al. Comparison of Moraxella catarrhalis isolates from children and adults for growth on modified New York city medium and potential virulence factors. J Med Microbiol 2003; 52: 853– 859 [CrossRef] [PubMed]
    [Google Scholar]
  57. Hol C, Verduin CM, van Dijke EE, Verhoef J, Fleer A et al. Complement resistance is a virulence factor of Branhamella (Moraxella) catarrhalis. FEMS Immunol Med Microbiol 1995; 11: 207– 211 [CrossRef] [PubMed]
    [Google Scholar]
  58. Liu YL, Xiao M, Cheng JW, Xu HP, Xu ZP et al. Moraxella catarrhalis macrolide-resistant isolates are highly concentrated in two MLST clonal complexes -CCN10 and CC363. Front Microbiol 2017; 8: 201 [CrossRef] [PubMed]
    [Google Scholar]
  59. Verduin CM, Kools-Sijmons M, van der Plas J, Vlooswijk J, Tromp M et al. Complement-resistant Moraxella catarrhalis forms a genetically distinct lineage within the species. FEMS Microbiol Lett 2000; 184: 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  60. Verhaegh SJ, Streefland A, Dewnarain JK, Farrell DJ, van Belkum A et al. Age-related genotypic and phenotypic differences in Moraxella catarrhalis isolates from children and adults presenting with respiratory disease in 2001-2002. Microbiology 2008; 154: 1178– 1184 [CrossRef] [PubMed]
    [Google Scholar]
  61. Verhaegh SJ, Snippe ML, Levy F, Verbrugh HA, Jaddoe VW et al. Colonization of healthy children by Moraxella catarrhalis is characterized by genotype heterogeneity, virulence gene diversity and co-colonization with Haemophilus influenzae. Microbiology 2011; 157: 169– 178 [CrossRef] [PubMed]
    [Google Scholar]
  62. Wirth T, Morelli G, Kusecek B, van Belkum A, van der Schee C et al. The rise and spread of a new pathogen: seroresistant Moraxella catarrhalis. Genome Res 2007; 17: 1647– 1656 [CrossRef] [PubMed]
    [Google Scholar]
  63. Meier PS, Troller R, Grivea IN, Syrogiannopoulos GA, Aebi C. The outer membrane proteins UspA1 and UspA2 of Moraxella catarrhalis are highly conserved in nasopharyngeal isolates from young children. Vaccine 2002; 20: 1754– 1760 [CrossRef] [PubMed]
    [Google Scholar]
  64. Earl JP, de Vries SP, Ahmed A, Powell E, Schultz MP et al. Comparative genomic analyses of the Moraxella catarrhalis serosensitive and seroresistant lineages demonstrate their independent evolution. Genome Biol Evol 2016; 8: 955– 974 [CrossRef] [PubMed]
    [Google Scholar]
  65. Lafontaine ER, Cope LD, Aebi C, Latimer JL, McCracken GH Jr et al. The UspA1 protein and a second type of UspA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro. J Bacteriol 2000; 182: 1364– 1373 [CrossRef] [PubMed]
    [Google Scholar]
  66. Aebi C, Lafontaine ER, Cope LD, Latimer JL, Lumbley SL et al. Phenotypic effect of isogenic uspA1 and uspA2 mutations on Moraxella catarrhalis 035E. Infect Immun 1998; 66: 3113– 3119 [PubMed]
    [Google Scholar]
  67. Tan TT, Nordström T, Forsgren A, Riesbeck K. The respiratory pathogen Moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2. J Infect Dis 2005; 192: 1029– 1038 [CrossRef] [PubMed]
    [Google Scholar]
  68. Tan TT, Forsgren A, Riesbeck K. The respiratory pathogen M oraxella c atarrhalis binds to laminin via ubiquitous surface proteins A1 and A2. J Infect Dis 2006; 194: 493– 497 [CrossRef] [PubMed]
    [Google Scholar]
  69. Pearson MM, Laurence CA, Guinn SE, Hansen EJ. Biofilm formation by Moraxella catarrhalis in vitro: roles of the UspA1 adhesin and the Hag hemagglutinin. Infect Immun 2006; 74: 1588– 1596 [CrossRef] [PubMed]
    [Google Scholar]
  70. Brooks MJ, Sedillo JL, Wagner N, Laurence CA, Wang W et al. Modular arrangement of allelic variants explains the divergence in Moraxella catarrhalis UspA protein function. Infect Immun 2008; 76: 5330– 5340 [CrossRef] [PubMed]
    [Google Scholar]
  71. Brooks MJ, Sedillo JL, Wagner N, Wang W, Attia AS et al. Moraxella catarrhalis binding to host cellular receptors is mediated by sequence-specific determinants not conserved among all UspA1 protein variants. Infect Immun 2008; 76: 5322– 5329 [CrossRef] [PubMed]
    [Google Scholar]
  72. Lafontaine ER, Wagner NJ, Hansen EJ. Expression of the Moraxella catarrhalis UspA1 protein undergoes phase variation and is regulated at the transcriptional level. J Bacteriol 2001; 183: 1540– 1551 [CrossRef] [PubMed]
    [Google Scholar]
  73. Meier PS, Troller R, Heiniger N, Grivea IN, Syrogiannopoulos GA et al. Moraxella catarrhalis strains with reduced expression of the UspA outer membrane proteins belong to a distinct subpopulation. Vaccine 2005; 23: 2000– 2008 [CrossRef] [PubMed]
    [Google Scholar]
  74. Heiniger N, Troller R, Meier PS, Aebi C. Cold shock response of the UspA1 outer membrane adhesin of Moraxella catarrhalis. Infect Immun 2005; 73: 8247– 8255 [CrossRef] [PubMed]
    [Google Scholar]
  75. Singh B, Al-Jubair T, Voraganti C, Andersson T, Mukherjee O et al. Moraxella catarrhalis binds plasminogen to evade host innate immunity. Infect Immun 2015; 83: 3458– 3469 [CrossRef] [PubMed]
    [Google Scholar]
  76. Pearson MM, Hansen EJ. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro. Infect Immun 2007; 75: 4316– 4325 [CrossRef] [PubMed]
    [Google Scholar]
  77. Hill DJ, Whittles C, Virji M. A novel group of Moraxella catarrhalis UspA proteins mediates cellular adhesion via CEACAMs and vitronectin. PLoS One 2012; 7: e45452 [CrossRef] [PubMed]
    [Google Scholar]
  78. Attia AS, Hansen EJ. A conserved tetranucleotide repeat is necessary for wild-type expression of the Moraxella catarrhalis UspA2 protein. J Bacteriol 2006; 188: 7840– 7852 [CrossRef] [PubMed]
    [Google Scholar]
  79. Hallström T, Nordström T, Tan TT, Manolov T, Lambris JD et al. Immune evasion of Moraxella catarrhalis involves ubiquitous surface protein A-dependent C3d binding. J Immunol 2011; 186: 3120– 3129 [CrossRef] [PubMed]
    [Google Scholar]
  80. Pearson MM, Lafontaine ER, Wagner NJ, St Geme JW, Hansen EJ. A hag mutant of Moraxella catarrhalis strain O35E is deficient in hemagglutination, autoagglutination, and immunoglobulin D-binding activities. Infect Immun 2002; 70: 4523– 4533 [CrossRef] [PubMed]
    [Google Scholar]
  81. Holm MM, Vanlerberg SL, Sledjeski DD, Lafontaine ER. The Hag protein of Moraxella catarrhalis strain O35E is associated with adherence to human lung and middle ear cells. Infect Immun 2003; 71: 4977– 4984 [CrossRef] [PubMed]
    [Google Scholar]
  82. Balder R, Krunkosky TM, Nguyen CQ, Feezel L, Lafontaine ER. Hag mediates adherence of Moraxella catarrhalis to ciliated human airway cells. Infect Immun 2009; 77: 4597– 4608 [CrossRef] [PubMed]
    [Google Scholar]
  83. Möllenkvist A, Nordström T, Halldén C, Christensen JJ, Forsgren A et al. The Moraxella catarrhalis immunoglobulin D-binding protein MID has conserved sequences and is regulated by a mechanism corresponding to phase variation. J Bacteriol 2003; 185: 2285– 2295 [CrossRef] [PubMed]
    [Google Scholar]
  84. Aebi C, Stone B, Beucher M, Cope LD, Maciver I et al. Expression of the CopB outer membrane protein by Moraxella catarrhalis is regulated by iron and affects iron acquisition from transferrin and lactoferrin. Infect Immun 1996; 64: 2024– 2030 [CrossRef] [PubMed]
    [Google Scholar]
  85. Helminen ME, Maciver I, Paris M, Latimer JL, Lumbley SL et al. A mutation affecting expression of a major outer membrane protein of Moraxella catarrhalis alters serum resistance and survival in vivo. J Infect Dis 1993; 168: 1194– 1201 [CrossRef] [PubMed]
    [Google Scholar]
  86. Mitov IG, Gergova RT, Ouzounova-Raykova VV. Distribution of genes encoding virulence factors ompB2, ompCD, ompE, β-lactamase and serotype in pathogenic and colonizing strains of Moraxella catarrhalis. Arch Med Res 2010; 41: 530– 535 [CrossRef] [PubMed]
    [Google Scholar]
  87. Liu DF, Xie X, Mastri MG, Fortuna-Nevin M, Colocillo C et al. Polymorphism of the major surface epitope of the CopB outer membrane protein of Moraxella catarrhalis. FEMS Immunol Med Microbiol 2006; 47: 343– 350 [CrossRef] [PubMed]
    [Google Scholar]
  88. Holm MM, Vanlerberg SL, Foley IM, Sledjeski DD, Lafontaine ER. The Moraxella catarrhalis porin-like outer membrane protein CD is an adhesin for human lung cells. Infect Immun 2004; 72: 1906– 1913 [CrossRef] [PubMed]
    [Google Scholar]
  89. Saito R, Matsuoka S, Fujinami Y, Nonaka S, Ichinose S et al. Role of Moraxella catarrhalis outer membrane protein CD in bacterial cell morphology and autoaggregation. Res Microbiol 2013; 164: 236– 243 [CrossRef] [PubMed]
    [Google Scholar]
  90. Bernstein JM, Reddy M. Bacteria-mucin interaction in the upper aerodigestive tract shows striking heterogeneity: implications in otitis media, rhinosinusitis, and pneumonia. Otolaryngol Head Neck Surg 2000; 122: 514– 520 [CrossRef] [PubMed]
    [Google Scholar]
  91. Murphy TF, Kirkham C, Lesse AJ. The major heat-modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis. Mol Microbiol 1993; 10: 87– 97 [CrossRef] [PubMed]
    [Google Scholar]
  92. Hsiao CB, Sethi S, Murphy TF. Outer membrane protein CD of Branhamella catarrhalis: sequence conservation in strains recovered from the human respiratory tract. Microb Pathog 1995; 19: 215– 225 [CrossRef] [PubMed]
    [Google Scholar]
  93. Sarwar J, Campagnari AA, Kirkham C, Murphy TF. Characterization of an antigenically conserved heat-modifiable major outer membrane protein of Branhamella catarrhalis. Infect Immun 1992; 60: 804– 809 [PubMed]
    [Google Scholar]
  94. Murphy TF, Brauer AL, Yuskiw N, Hiltke TJ. Antigenic structure of outer membrane protein E of Moraxella catarrhalis and construction and characterization of mutants. Infect Immun 2000; 68: 6250– 6256 [CrossRef] [PubMed]
    [Google Scholar]
  95. Bhushan R, Craigie R, Murphy TF. Molecular cloning and characterization of outer membrane protein E of Moraxella (Branhamella) catarrhalis. J Bacteriol 1994; 176: 6636– 6643 [CrossRef] [PubMed]
    [Google Scholar]
  96. Murphy TF, Brauer AL, Yuskiw N, Mcnamara ER, Kirkham C. Conservation of outer membrane protein E among strains of Moraxella catarrhalis. Infect Immun 2001; 69: 3576– 3580 [CrossRef] [PubMed]
    [Google Scholar]
  97. Bhushan R, Kirkham C, Sethi S, Murphy TF. Antigenic characterization and analysis of the human immune response to outer membrane protein E of Branhamella catarrhalis. Infect Immun 1997; 65: 2668– 2675 [PubMed]
    [Google Scholar]
  98. Hays JP, van Selm S, Hoogenboezem T, Estevão S, Eadie K et al. Identification and characterization of a novel outer membrane protein (OMP J) of Moraxella catarrhalis that exists in two major forms. J Bacteriol 2005; 187: 7977– 7984 [CrossRef] [PubMed]
    [Google Scholar]
  99. Khan MA, Northwood JB, Levy F, Verhaegh SJ, Farrell DJ et al. bro β-lactamase and antibiotic resistances in a global cross-sectional study of Moraxella catarrhalis from children and adults. J Antimicrob Chemother 2010; 65: 91– 97 [CrossRef] [PubMed]
    [Google Scholar]
  100. Köseoglu O, Ergin A, Hascelik G. Evaluation of restriction endonuclease analysis of BRO β-lactamases in clinical and carrier isolates of Moraxella catarrhalis. Scand J Infect Dis 2004; 36: 431– 434 [CrossRef] [PubMed]
    [Google Scholar]
  101. Richter SS, Winokur PL, Brueggemann AB, Huynh HK, Rhomberg PR et al. Molecular characterization of the β-lactamases from clinical isolates of Moraxella (Branhamella) catarrhalis obtained from 24 U.S. medical centers during 1994–1995 and 1997–1998. Antimicrob Agents Chemother 2000; 44: 444– 446 [CrossRef] [PubMed]
    [Google Scholar]
  102. Fung CP, Yeo SF, Livermore DM. Susceptibility of Moraxella catarrhalis isolates to β-lactam antibiotics in relation to β-lactamase pattern. J Antimicrob Chemother 1994; 33: 215– 222 [CrossRef] [PubMed]
    [Google Scholar]
  103. Bootsma HJ, van Dijk H, Verhoef J, Fleer A, Mooi FR. Molecular characterization of the BRO β-lactamase of Moraxella (Branhamella) catarrhalis. Antimicrob Agents Chemother 1996; 40: 966– 972 [PubMed]
    [Google Scholar]
  104. Schmitz FJ, Beeck A, Perdikouli M, Boos M, Mayer S et al. Production of BRO β-lactamases and resistance to complement in European Moraxella catarrhalis isolates. J Clin Microbiol 2002; 40: 1546– 1548 [CrossRef] [PubMed]
    [Google Scholar]
  105. Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 2005; 73: 7569– 7577 [CrossRef] [PubMed]
    [Google Scholar]
  106. Spaniol V, Heiniger N, Troller R, Aebi C. Outer membrane protein UspA1 and lipooligosaccharide are involved in invasion of human epithelial cells by Moraxella catarrhalis. Microbes Infect 2008; 10: 3– 11 [CrossRef] [PubMed]
    [Google Scholar]
  107. Vaneechoutte M, Verschraegen G, Claeys G, Van Den Abeele AM. Serological typing of Branhamella catarrhalis strains on the basis of lipopolysaccharide antigens. J Clin Microbiol 1990; 28: 182– 187 [PubMed]
    [Google Scholar]
  108. Edwards KJ, Schwingel JM, Datta AK, Campagnari AA. Multiplex PCR assay that identifies the major lipooligosaccharide serotype expressed by Moraxella catarrhalis clinical isolates. J Clin Microbiol 2005; 43: 6139– 6143 [CrossRef] [PubMed]
    [Google Scholar]
  109. Seib KL, Peak IR, Jennings MP. Phase variable restriction-modification systems in Moraxella catarrhalis. FEMS Immunol Med Microbiol 2002; 32: 159– 165 [CrossRef] [PubMed]
    [Google Scholar]
  110. Blakeway LV, Power PM, Jen FE, Worboys SR, Boitano M et al. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media. Faseb J 2014; 28: 5197– 5207 [CrossRef] [PubMed]
    [Google Scholar]
  111. Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 2009; 5: e1000400 [CrossRef] [PubMed]
    [Google Scholar]
  112. Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I et al. A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. Faseb J 2011; 25: 3622– 3633 [CrossRef] [PubMed]
    [Google Scholar]
  113. Vanwagoner TM, Atack JM, Nelson KL, Smith HK, Fox KL et al. The modA10 phasevarion of nontypeable Haemophilus influenzae R2866 regulates multiple virulence-associated traits. Microb Pathog 2016; 92: 60– 67 [CrossRef] [PubMed]
    [Google Scholar]
  114. Brockman KL, Jurcisek JA, Atack JM, Srikhanta YN, Jennings MP et al. ModA2 phasevarion switching in nontypeable Haemophilus influenzae increases the severity of experimental otitis media. J Infect Dis 2016; 214: 817– 824 [CrossRef] [PubMed]
    [Google Scholar]
  115. Adlowitz DG, Hiltke T, Lesse AJ, Murphy TF. Identification and characterization of outer membrane proteins G1a and G1b of Moraxella catarrhalis. Vaccine 2004; 22: 2533– 2540 [CrossRef] [PubMed]
    [Google Scholar]
  116. Lipski SL, Akimana C, Timpe JM, Wooten RM, Lafontaine ER. The Moraxella catarrhalis autotransporter McaP is a conserved surface protein that mediates adherence to human epithelial cells through its N-terminal passenger domain. Infect Immun 2007; 75: 314– 324 [CrossRef] [PubMed]
    [Google Scholar]
  117. Ruckdeschel EA, Kirkham C, Lesse AJ, Hu Z, Murphy TF. Mining the Moraxella catarrhalis genome: identification of potential vaccine antigens expressed during human infection. Infect Immun 2008; 76: 1599– 1607 [CrossRef] [PubMed]
    [Google Scholar]
  118. Otsuka T, Kirkham C, Johnson A, Jones MM, Murphy TF. Substrate binding protein SBP2 of a putative ABC transporter as a novel vaccine antigen of Moraxella catarrhalis. Infect Immun 2014; 82: 3503– 3512 [CrossRef] [PubMed]
    [Google Scholar]
  119. Bonnah RA, Wong H, Loosmore SM, Schryvers AB. Characterization of Moraxella (Branhamella) catarrhalis lbpB, lbpA, and lactoferrin receptor orf3 isogenic mutants. Infect Immun 1999; 67: 1517– 1520 [PubMed]
    [Google Scholar]
  120. Myers LE, Yang YP, Du RP, Wang Q, Harkness RE et al. The transferrin binding protein B of Moraxella catarrhalis elicits bactericidal antibodies and is a potential vaccine antigen. Infect Immun 1998; 66: 4183– 4192 [PubMed]
    [Google Scholar]
  121. Murphy TF, Kirkham C, Johnson A, Brauer AL, Koszelak-Rosenblum M et al. Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis. Vaccine 2016; 34: 3855– 3861 [CrossRef] [PubMed]
    [Google Scholar]
  122. Murphy TF, Brauer AL, Johnson A, Wilding GE, Koszelak-Rosenblum M et al. A cation-binding surface protein as a vaccine antigen to prevent Moraxella catarrhalis otitis media and infections in chronic obstructive pulmonary disease. Clin Vaccine Immunol 2017; Epub ahead of print [CrossRef] [PubMed]
    [Google Scholar]
  123. Easton DM, Smith A, Gallego SG, Foxwell AR, Cripps AW et al. Characterization of a novel porin protein from Moraxella catarrhalis and identification of an immunodominant surface loop. J Bacteriol 2005; 187: 6528– 6535 [CrossRef] [PubMed]
    [Google Scholar]
  124. Jetter M, Heiniger N, Spaniol V, Troller R, Schaller A et al. Outer membrane porin M35 of Moraxella catarrhalis mediates susceptibility to aminopenicillins. BMC Microbiol 2009; 9: 188 [CrossRef] [PubMed]
    [Google Scholar]
  125. Du RP, Wang Q, Yang YP, Schryvers AB, Chong P et al. Cloning and expression of the Moraxella catarrhalis lactoferrin receptor genes. Infect Immun 1998; 66: 3656– 3665 [PubMed]
    [Google Scholar]
  126. Luke-Marshall NR, Sauberan SL, Campagnari AA. Comparative analyses of the Moraxella catarrhalis type-IV pilus structural subunit PilA. Gene 2011; 477: 19– 23 [CrossRef] [PubMed]
    [Google Scholar]
  127. Yang M, Johnson A, Murphy TF. Characterization and evaluation of the Moraxella catarrhalis oligopeptide permease a as a mucosal vaccine antigen. Infect Immun 2011; 79: 846– 857 [CrossRef] [PubMed]
    [Google Scholar]
  128. Brooks MJ, Laurence CA, Hansen EJ, Gray-Owen SD. Characterization of the Moraxella catarrhalis opa-like protein, OlpA, reveals a phylogenetically conserved family of outer membrane proteins. J Bacteriol 2007; 189: 76– 82 [CrossRef] [PubMed]
    [Google Scholar]
  129. Wang W, Joslin SN, Pybus C, Evans AS, Lichaa F et al. Identification of an outer membrane lipoprotein involved in nasopharyngeal colonization by Moraxella catarrhalis in an animal model. Infect Immun 2014; 82: 2287– 2299 [CrossRef] [PubMed]
    [Google Scholar]
  130. Furano K, Campagnari AA. Identification of a hemin utilization protein of Moraxella catarrhalis (HumA). Infect Immun 2004; 72: 6426– 6432 [CrossRef] [PubMed]
    [Google Scholar]
  131. Furano K, Luke NR, Howlett AJ, Campagnari AA. Identification of a conserved Moraxella catarrhalis haemoglobin-utilization protein, MhuA. Microbiology 2005; 151: 1151– 1158 [CrossRef] [PubMed]
    [Google Scholar]
  132. Balder R, Hassel J, Lipski S, Lafontaine ER. Moraxella catarrhalis strain O35E expresses two filamentous hemagglutinin-like proteins that mediate adherence to human epithelial cells. Infect Immun 2007; 75: 2765– 2775 [CrossRef] [PubMed]
    [Google Scholar]
  133. Plamondon P, Luke NR, Campagnari AA. Identification of a novel two-partner secretion locus in Moraxella catarrhalis. Infect Immun 2007; 75: 2929– 2936 [CrossRef] [PubMed]
    [Google Scholar]
  134. Bullard B, Lipski SL, Lafontaine ER. Hag directly mediates the adherence of Moraxella catarrhalis to human middle ear cells. Infect Immun 2005; 73: 5127– 5136 [CrossRef] [PubMed]
    [Google Scholar]
  135. Luke NR, Howlett AJ, Shao J, Campagnari AA. Expression of type IV pili by Moraxella catarrhalis is essential for natural competence and is affected by iron limitation. Infect Immun 2004; 72: 6262– 6270 [CrossRef] [PubMed]
    [Google Scholar]
  136. Timpe JM, Holm MM, Vanlerberg SL, Basrur V, Lafontaine ER. Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities. Infect Immun 2003; 71: 4341– 4350 [CrossRef] [PubMed]
    [Google Scholar]
  137. Easton DM, Maier E, Benz R, Foxwell AR, Cripps AW et al. Moraxella catarrhalis M35 is a general porin that is important for growth under nutrient-limiting conditions and in the nasopharynges of mice. J Bacteriol 2008; 190: 7994– 8002 [CrossRef] [PubMed]
    [Google Scholar]
  138. Jetter M, Spaniol V, Troller R, Aebi C. Down-regulation of porin M35 in Moraxella catarrhalis by aminopenicillins and environmental factors and its potential contribution to the mechanism of resistance to aminopenicillins. J Antimicrob Chemother 2010; 65: 2089– 2096 [CrossRef] [PubMed]
    [Google Scholar]
  139. Jones MM, Johnson A, Koszelak-Rosenblum M, Kirkham C, Brauer AL et al. Role of the oligopeptide permease ABC transporter of Moraxella catarrhalis in nutrient acquisition and persistence in the respiratory tract. Infect Immun 2014; 82: 4758– 4766 [CrossRef] [PubMed]
    [Google Scholar]
  140. Smidt M, Bättig P, Verhaegh SJ, Niebisch A, Hanner M et al. Comprehensive antigen screening identifies Moraxella catarrhalis proteins that induce protection in a mouse pulmonary clearance model. PLoS One 2013; 8: e64422 [CrossRef] [PubMed]
    [Google Scholar]
  141. Ruckdeschel EA, Brauer AL, Johnson A, Murphy TF. Characterization of proteins Msp22 and Msp75 as vaccine antigens of Moraxella catarrhalis. Vaccine 2009; 27: 7065– 7072 [CrossRef] [PubMed]
    [Google Scholar]
  142. Otsuka T, Kirkham C, Brauer A, Koszelak-Rosenblum M, Malkowski MG et al. The vaccine candidate substrate binding protein SBP2 plays a key role in arginine uptake, which is required for growth of Moraxella catarrhalis. Infect Immun 2015; 84: 432– 438 [CrossRef] [PubMed]
    [Google Scholar]
  143. Fox KL, Atack JM, Srikhanta YN, Eckert A, Novotny LA et al. Selection for phase variation of LOS biosynthetic genes frequently occurs in progression of non-typeable Haemophilus influenzae infection from the nasopharynx to the middle ear of human patients. PLoS One 2014; 9: e90505 [CrossRef] [PubMed]
    [Google Scholar]
  144. Morgan MG, Mckenzie H, Enright MC, Bain M, Emmanuel FX. Use of molecular methods to characterize Moraxella catarrhalis strains in a suspected outbreak of nosocomial infection. Eur J Clin Microbiol Infect Dis 1992; 11: 305– 312 [CrossRef] [PubMed]
    [Google Scholar]
  145. Picard B, Goullet P, Denamur E, Suermondt G. Esterase electrophoresis: a molecular tool for studying the epidemiology of Branhamella catarrhalis nosocomial infection. Epidemiol Infect 1989; 103: 547– 554 [CrossRef] [PubMed]
    [Google Scholar]
  146. Mckenzie H, Morgan MG, Jordens JZ, Enright MC, Bain M. Characterisation of hospital isolates of Moraxella (Branhamella) catarrhalis by SDS-PAGE of whole-cell proteins, immunoblotting and restriction-endonuclease analysis. J Med Microbiol 1992; 37: 70– 76 [CrossRef] [PubMed]
    [Google Scholar]
  147. Bartos LC, Murphy TF. Comparison of the outer membrane proteins of 50 strains of Branhamella catarrhalis. J Infect Dis 1988; 158: 761– 765 [CrossRef] [PubMed]
    [Google Scholar]
  148. Peiris V, Heald J. Rapid method for differentiating strains of Branhamella catarrhalis. J Clin Pathol 1992; 45: 532– 534 [CrossRef] [PubMed]
    [Google Scholar]
  149. Nash DR, Wallace RJ, Steingrube VA, Shurin PA. Isoelectric focusing of β-lactamases from sputum and middle ear isolates of Branhamella catarrhalis recovered in the United States. Drugs 1986; 31: 48– 54 [CrossRef] [PubMed]
    [Google Scholar]
  150. Schaller A, Troller R, Molina D, Gallati S, Aebi C et al. Rapid typing of Moraxella catarrhalis subpopulations based on outer membrane proteins using mass spectrometry. Proteomics 2006; 6: 172– 180 [CrossRef] [PubMed]
    [Google Scholar]
  151. Christensen JJ, Gerner-Smidt P, Bruun B. Moraxella (Branhamella) catarrhalis: restriction enzyme analysis typing with HinfI, HaeIII and PstI. FEMS Immunol Med Microbiol 1995; 12: 43– 46 [CrossRef] [PubMed]
    [Google Scholar]
  152. Davison SM, Low DE, Cruz RH, Beaulieu D, Scriver SR. Epidemiological typing of Moraxella catarrhalis by pulsed field gel electrophoresis. Can J Infect Dis 1995; 6: 141– 144 [CrossRef] [PubMed]
    [Google Scholar]
  153. Walker ES, Preston RA, Post JC, Ehrlich GD, Kalbfleisch JH et al. Genetic diversity among strains of Moraxella catarrhalis: analysis using multiple DNA probes and a single-locus PCR-restriction fragment length polymorphism method. J Clin Microbiol 1998; 36: 1977– 1983 [PubMed]
    [Google Scholar]
  154. Vu-Thien H, Dulot C, Moissenet D, Fauroux B, Garbarg-Chenon A. Comparison of randomly amplified polymorphic DNA analysis and pulsed-field gel electrophoresis for typing of Moraxella catarrhalis strains. J Clin Microbiol 1999; 37: 450– 452 [PubMed]
    [Google Scholar]
  155. Davie JJ, Earl J, de Vries SP, Ahmed A, Hu FZ et al. Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates. BMC Genomics 2011; 12: 70 [CrossRef] [PubMed]
    [Google Scholar]
  156. Wolf B, Kools-Sijmons M, Verduin C, Rey LC, Gama A et al. Genetic diversity among strains of Moraxella catarrhalis cultured from the nasopharynx of young and healthy Brazilian, Angolan and Dutch children. Eur J Clin Microbiol Infect Dis 2000; 19: 759– 764 [CrossRef] [PubMed]
    [Google Scholar]
  157. Levy F, Leman SC, Sarubbi FA, Walker ES. Nosocomial transmission clusters and risk factors in Moraxella catarrhalis. Epidemiol Infect 2009; 137: 581– 590 [CrossRef] [PubMed]
    [Google Scholar]
  158. Pingault NM, Lehmann D, Bowman J, Riley TV. A comparison of molecular typing methods for Moraxella catarrhalis. J Appl Microbiol 2007; 103: 2489– 2495 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000523
Loading
/content/journal/micro/10.1099/mic.0.000523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error