The gene transfer agent is induced by nutrient depletion and the RNAP omega subunit Free

Abstract

Small bacteriophage-like particles called gene transfer agents (GTAs) that mediate DNA transfer between cells are produced by a variety of prokaryotes. The model GTA, produced by the alphaproteobacterium (RcGTA), is controlled by several cellular regulators, and production is induced upon entry into the stationary phase. We report that RcGTA production and gene transfer are stimulated by nutrient depletion. Cells depleted of organic carbon or blocked for amino acid biosynthesis increased RcGTA production and release from cells. Furthermore, cells lacking the sole RelA-SpoT homologue produced decreased levels of RcGTA, and the RNA polymerase omega () subunit was required for appreciable production of RcGTA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000519
2017-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/9/1355.html?itemId=/content/journal/micro/10.1099/mic.0.000519&mimeType=html&fmt=ahah

References

  1. Lang AS, Beatty JT. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol 2007; 15:54–62 [View Article][PubMed]
    [Google Scholar]
  2. Lang AS, Taylor TA, Beatty JT. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. J Mol Evol 2002; 55:534–543 [View Article][PubMed]
    [Google Scholar]
  3. Madigan MT, Jung DO. An overview of purple bacteria: systematics, physiology, and habitats. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (editors) The Purple Phototrophic Bacteria Switzerland: Springer International Publishing; 2009 pp. 1–15
    [Google Scholar]
  4. Marrs B. Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 1974; 71:971–973 [View Article][PubMed]
    [Google Scholar]
  5. Weaver PF, Wall JD, Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol 1975; 105:207–216 [View Article][PubMed]
    [Google Scholar]
  6. Yen HC, Hu NT, Marrs BL. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol 1979; 131:157–168 [View Article][PubMed]
    [Google Scholar]
  7. Fogg PC, Westbye AB, Beatty JT. One for all or all for one: heterogeneous expression and host cell lysis are key to gene transfer agent activity in Rhodobacter capsulatus. PLoS One 2012; 7:e43772 [View Article][PubMed]
    [Google Scholar]
  8. Hynes AP, Mercer RG, Watton DE, Buckley CB, Lang AS. DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA. Mol Microbiol 2012; 85:314–325 [View Article][PubMed]
    [Google Scholar]
  9. Wall JD, Weaver PF, Gest H. Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol 1975; 105:217–224 [View Article][PubMed]
    [Google Scholar]
  10. Brimacombe CA, Ding H, Beatty JT. Rhodobacter capsulatus DprA is essential for RecA-mediated gene transfer agent (RcGTA) recipient capability regulated by quorum-sensing and the CtrA response regulator. Mol Microbiol 2014; 92:1260–1278 [View Article][PubMed]
    [Google Scholar]
  11. Brimacombe CA, Ding H, Johnson JA, Beatty JT. Homologues of genetic transformation DNA import genes are required for Rhodobacter capsulatus gene transfer agent recipient capability regulated by the response regulator CtrA. J Bacteriol 2015; 197:2653–2663 [View Article][PubMed]
    [Google Scholar]
  12. Brimacombe CA, Stevens A, Jun D, Mercer R, Lang AS et al. Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA). Mol Microbiol 2013; 87:802–817 [View Article][PubMed]
    [Google Scholar]
  13. Westbye AB, Kuchinski K, Yip CK, Beatty JT. The gene transfer agent RcGTA contains head spikes needed for binding to the Rhodobacter capsulatus polysaccharide cell capsule. J Mol Biol 2016; 428:477–491 [View Article][PubMed]
    [Google Scholar]
  14. Westbye AB, Beatty JT, Lang AS. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol 2017; 38:122–129 [View Article][PubMed]
    [Google Scholar]
  15. Florizone SM. Studies on the regulation of the gene transfer agent (GTA) of Rhodobacter capsulatus PhD Thesis University of British Columbia: 2006
    [Google Scholar]
  16. Lang AS, Beatty JT. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci USA 2000; 97:859–864 [View Article][PubMed]
    [Google Scholar]
  17. Solioz M, Yen HC, Marris B. Release and uptake of gene transfer agent by Rhodopseudomonas capsulata. J Bacteriol 1975; 123:651–657[PubMed]
    [Google Scholar]
  18. Leung MM, Brimacombe CA, Spiegelman GB, Beatty JT. The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus. Mol Microbiol 2012; 83:759–774 [View Article][PubMed]
    [Google Scholar]
  19. Schaefer AL, Taylor TA, Beatty JT, Greenberg EP. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 2002; 184:6515–6521 [View Article][PubMed]
    [Google Scholar]
  20. Ding H, Moksa MM, Hirst M, Beatty JT. Draft genome sequences of six Rhodobacter capsulatus Strains, YW1, YW2, B6, Y262, R121, and DE442. Genome Announc 2014; 2:e00050-14 [View Article][PubMed]
    [Google Scholar]
  21. Solioz M, Marrs B. The gene transfer agent of Rhodopseudomonas capsulata. Purification and characterization of its nucleic acid. Arch Biochem Biophys 1977; 181:300–307[PubMed] [CrossRef]
    [Google Scholar]
  22. Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C et al. Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. J Bacteriol 2010; 192:3545–3546 [View Article][PubMed]
    [Google Scholar]
  23. Beatty JT, Gest H. Generation of succinyl-coenzyme a in photosynthetic bacteria. Arch Microbiol 1981; 129:335–340 [View Article]
    [Google Scholar]
  24. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2 ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  25. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1983; 1:784–791 [View Article]
    [Google Scholar]
  26. Taylor DP, Cohen SN, Clark WG, Marrs BL. Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol 1983; 154:580–590[PubMed]
    [Google Scholar]
  27. Barany F. Single-stranded hexameric linkers: a system for in-phase insertion mutagenesis and protein engineering. Gene 1985; 37:111–123 [View Article][PubMed]
    [Google Scholar]
  28. Aklujkar M, Harmer AL, Prince RC, Beatty JT. The orf162b sequence of Rhodobacter capsulatus encodes a protein required for optimal levels of photosynthetic pigment-protein complexes. J Bacteriol 2000; 182:5440–5447 [View Article][PubMed]
    [Google Scholar]
  29. Masuda S, Bauer CE. Null mutation of HvrA compensates for loss of an essential relA/spoT-like gene in Rhodobacter capsulatus. J Bacteriol 2004; 186:235–239 [View Article][PubMed]
    [Google Scholar]
  30. Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA et al. Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 2009; 75:6613–6615 [View Article][PubMed]
    [Google Scholar]
  31. Westbye AB, Leung MM, Florizone SM, Taylor TA, Johnson JA et al. Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent. J Bacteriol 2013; 195:5025–5040 [View Article][PubMed]
    [Google Scholar]
  32. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article][PubMed]
    [Google Scholar]
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  34. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article][PubMed]
    [Google Scholar]
  35. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 1998; 95:5857–5864 [View Article][PubMed]
    [Google Scholar]
  36. Mcwilliam H, Li W, Uludag M, Squizzato S, Park YM et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 2013; 41:W597–W600 [View Article][PubMed]
    [Google Scholar]
  37. Taylor TA. Evolution and regulation of the gene transfer agent (GTA) of Rhodobacter capsulatus MSc thesis, The University of British Columbia 2004
    [Google Scholar]
  38. Beatty JT, Gest H. Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. J Bacteriol 1981; 148:584–593[PubMed]
    [Google Scholar]
  39. Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol 2013; 21:174–180 [View Article][PubMed]
    [Google Scholar]
  40. Gaca AO, Colomer-Winter C, Lemos JA. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 2015; 197:1146–1156 [View Article][PubMed]
    [Google Scholar]
  41. Potrykus K, Cashel M. (p)ppGpp: still magical?. Annu Rev Microbiol 2008; 62:35–51 [View Article][PubMed]
    [Google Scholar]
  42. Burgess RR. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem 1969; 244:6168–6176[PubMed]
    [Google Scholar]
  43. Mathew R, Chatterji D. The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol 2006; 14:450–455 [View Article][PubMed]
    [Google Scholar]
  44. Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 2013; 50:420–429 [View Article][PubMed]
    [Google Scholar]
  45. Zuo Y, Wang Y, Steitz TA. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 2013; 50:430–436 [View Article][PubMed]
    [Google Scholar]
  46. Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 2011; 6:e23479 [View Article][PubMed]
    [Google Scholar]
  47. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 2015; 13:298–309 [View Article][PubMed]
    [Google Scholar]
  48. Hynes AP, Shakya M, Mercer RG, Grüll MP, Bown L et al. Functional and evolutionary characterization of a gene transfer agent's multilocus "Genome". Mol Biol Evol 2016; 33:2530–2543 [View Article][PubMed]
    [Google Scholar]
  49. Kuchinski KS, Brimacombe CA, Westbye AB, Ding H, Beatty JT. The SOS response master regulator LexA regulates the gene transfer agent of rhodobacter capsulatus and represses transcription of the signal transduction protein CckA. J Bacteriol 2016; 198:1137–1148 [View Article][PubMed]
    [Google Scholar]
  50. Mercer RG, Quinlan M, Rose AR, Noll S, Beatty JT et al. Regulatory systems controlling motility and gene transfer agent production and release in Rhodobacter capsulatus. FEMS Microbiol Lett 2012; 331:53–62 [View Article][PubMed]
    [Google Scholar]
  51. Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2013; 37:336–363 [View Article][PubMed]
    [Google Scholar]
  52. Carlson CA, Pierson LS, Rosen JJ, Ingraham JL. Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 1983; 153:93–99[PubMed]
    [Google Scholar]
  53. Lorenz MG, Wackernagel W. Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 1990; 154:380–385 [View Article][PubMed]
    [Google Scholar]
  54. Redfield RJ. sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J Bacteriol 1991; 173:5612–5618 [View Article][PubMed]
    [Google Scholar]
  55. Chandler MS. The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci USA 1992; 89:1626–1630 [View Article][PubMed]
    [Google Scholar]
  56. Dorocicz IR, Williams PM, Redfield RJ. The Haemophilus influenzae adenylate cyclase gene: cloning, sequence, and essential role in competence. J Bacteriol 1993; 175:7142–7149 [View Article][PubMed]
    [Google Scholar]
  57. Herriott RM, Meyer EM, Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol 1970; 101:517–524[PubMed]
    [Google Scholar]
  58. Blokesch M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 2012; 14:1898–1912 [View Article][PubMed]
    [Google Scholar]
  59. Palmen R, Buijsman P, Hellingwerf KJ. Physiological regulation of competence induction for natural transformation in Acinetobacter calcoaceticus. Arch Microbiol 1994; 162:344–351 [View Article]
    [Google Scholar]
  60. Palmen R, Hellingwerf KJ. Uptake and processing of DNA by Acinetobacter calcoaceticus-a review. Gene 1997; 192:179–190 [View Article][PubMed]
    [Google Scholar]
  61. Boutte CC, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 2011; 80:695–714 [View Article][PubMed]
    [Google Scholar]
  62. Ross W, Sanchez-Vazquez P, Chen AY, Lee JH, Burgos HL et al. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol Cell 2016; 62:811–823 [View Article][PubMed]
    [Google Scholar]
  63. Eccleston ED, Gray ED. Variations in ppGpp levels in Rhodopseudomonas spheroides during adaptation to decreased light intensity. Biochem Biophys Res Commun 1973; 54:1370–1376 [View Article][PubMed]
    [Google Scholar]
  64. Ghosh P, Ishihama A, Chatterji D. Escherichia coli RNA polymerase subunit ω and its N-terminal domain bind full-length β' to facilitate incorporation into the α2β subassembly. Eur J Biochem 2001; 268:4621–4627[PubMed] [CrossRef]
    [Google Scholar]
  65. Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA et al. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci USA 2001; 98:892–897 [View Article][PubMed]
    [Google Scholar]
  66. Mukherjee K, Nagai H, Shimamoto N, Chatterji D. GroEL is involved in activation of Escherichia coli RNA polymerase devoid of the omega subunit in vivo. Eur J Biochem 1999; 266:228–235 [View Article][PubMed]
    [Google Scholar]
  67. Weiss A, Moore BD, Tremblay MH, Chaput D, Kremer A et al. The ω subunit governs RNA polymerase stability and transcriptional specificity in Staphylococcus aureus. J Bacteriol 2016; 199:e00459-16 [View Article][PubMed]
    [Google Scholar]
  68. Richard CL, Tandon A, Sloan NR, Kranz RG. RNA polymerase subunit requirements for activation by the enhancer-binding protein Rhodobacter capsulatus NtrC. J Biol Chem 2003; 278:31701–31708 [View Article][PubMed]
    [Google Scholar]
  69. Gentry D, Xiao H, Burgess R, Cashel M. The ω subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J Bacteriol 1991; 173:3901–3903 [View Article][PubMed]
    [Google Scholar]
  70. Weiss A, Shaw LN. Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria. FEMS Microbiol Rev 2015; 39:541–554 [View Article][PubMed]
    [Google Scholar]
  71. Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in αproteobacteria. Nat Rev Microbiol 2017; 15:137–148 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000519
Loading
/content/journal/micro/10.1099/mic.0.000519
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed