1887

Abstract

The inhibition of mevalonate kinase (MVK) by downstream metabolites is an important mechanism in the regulation of isoprenoid production in a broad range of organisms. The first feedback-resistant MVK was previously discovered in the methanogenic archaeon . Here, we report the cloning, expression, purification, kinetic characterization and inhibition analysis of MVKs from two other methanogens, and . Similar to the MVK, these enzymes were not inhibited by diphosphomevalonate (DPM), dimethylallyl diphosphate (DMAPP), isopentenyldiphosphate (IPP), geranylpyrophosphate (GPP) or farnesylpyrophosphate (FPP). However, they exhibited significantly higher affinity to mevalonate and higher catalytic efficiency than the previously characterized enzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000510
2017-09-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/9/1283.html?itemId=/content/journal/micro/10.1099/mic.0.000510&mimeType=html&fmt=ahah

References

  1. Katsuki H, Bloch K. Studies on the biosynthesis of ergosterol in yeast. Formation of methylated intermediates. J Biol Chem 1967; 242:222–227[PubMed]
    [Google Scholar]
  2. Lynen F. Biosynthetic pathways from acetate to natural products. Pure Appl Chem 1967; 14:137–167 [View Article][PubMed]
    [Google Scholar]
  3. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H. Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 1996; 118:2564–2566 [View Article]
    [Google Scholar]
  4. Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Jpn Acad Ser B Phys Biol Sci 2012; 88:41–52 [View Article][PubMed]
    [Google Scholar]
  5. Ekiel I, Smith IC, Sprott GD. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol 1983; 156:316–326[PubMed]
    [Google Scholar]
  6. Ekiel I, Sprott GD, Smith IC. Mevalonic acid is partially synthesized from amino acids in Halobacterium cutirubrum: a C13 nuclear magnetic resonance study. J Bacteriol 1986; 166:559–564 [View Article][PubMed]
    [Google Scholar]
  7. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996; 273:1058–1073 [View Article][PubMed]
    [Google Scholar]
  8. Kyrpides NC, Olsen GJ, Klenk HP, White O, Woese CR. Methanococcus Jannaschii genome: revisited. Microb Comp Genomics 1996; 1:329–338[PubMed]
    [Google Scholar]
  9. Selkov E, Maltsev N, Olsen GJ, Overbeek R, Whitman WB. A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. Gene 1997; 197:GC11–GC26 [View Article][PubMed]
    [Google Scholar]
  10. Barkley SJ, Cornish RM, Poulter CD. Identification of an Archaeal type II isopentenyl diphosphate isomerase in Methanothermobacter thermautotrophicus. J Bacteriol 2004; 186:1811–1817 [View Article][PubMed]
    [Google Scholar]
  11. Huang KX, Scott AI, Bennett GN. Overexpression, purification, and characterization of the thermostable mevalonate kinase from Methanococcus jannaschii. Protein Expr Purif 1999; 17:33–40 [View Article][PubMed]
    [Google Scholar]
  12. Smit A, Mushegian A. Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 2000; 10:1468–1484 [View Article][PubMed]
    [Google Scholar]
  13. Dellas N, Thomas ST, Manning G, Noel JP. Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2013; 2:e00672 [View Article][PubMed]
    [Google Scholar]
  14. Vannice JC, Skaff DA, Keightley A, Addo JK, Wyckoff GJ et al. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol 2014; 196:1055–1063 [View Article][PubMed]
    [Google Scholar]
  15. Beck ZQ, Mampel J, Meurer G, Miller MC, Sanford KJ et al. Production of isoprene, isoprenoid, and isoprenoid precursors using an alternative lower mevalonate pathway. United States Patent Application 20160002672(A1)
    [Google Scholar]
  16. Azami Y, Hattori A, Nishimura H, Kawaide H, Yoshimura T et al. (R)-mevalonate 3-phosphate is an intermediate of the mevalonate pathway in Thermoplasma acidophilum. J Biol Chem 2014; 289:15957–15967 [View Article][PubMed]
    [Google Scholar]
  17. Dorsey JK, Porter JW. The inhibition of mevalonic kinase by geranyl and farnesyl pyrophosphates. J Biol Chem 1968; 243:4667–4670[PubMed]
    [Google Scholar]
  18. Gray JC, Kekwick RG. The inhibition of plant mevalonate kinase preparations by prenyl pyrophosphates. Biochim Biophys Acta 1972; 279:290–296 [View Article][PubMed]
    [Google Scholar]
  19. Hinson DD, Chambliss KL, Toth MJ, Tanaka RD, Gibson KM. Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. J Lipid Res 1997; 38:2216–2223[PubMed]
    [Google Scholar]
  20. Voynova NE, Rios SE, Miziorko HM. Staphylococcus aureus mevalonate kinase: isolation and characterization of an enzyme of the isoprenoid biosynthetic pathway. J Bacteriol 2004; 186:61–67 [View Article][PubMed]
    [Google Scholar]
  21. Andreassi JL, Dabovic K, Leyh TS. Streptococcus pneumoniae isoprenoid biosynthesis is downregulated by diphosphomevalonate: an antimicrobial target. Biochemistry 2004; 43:16461–16466 [View Article][PubMed]
    [Google Scholar]
  22. Martín Sánchez C, Pérez Martín JM, Jin JS, Dávalos A, Zhang W et al. Disruption of the mevalonate pathway induces dNTP depletion and DNA damage. Biochim Biophys Acta 2015; 1851:1240–1253 [View Article][PubMed]
    [Google Scholar]
  23. Primak YA, du M, Miller MC, Wells DH, Nielsen AT et al. Characterization of a feedback-resistant mevalonate kinase from the archaeon Methanosarcina mazei. Appl Environ Microbiol 2011; 77:7772–7778 [View Article][PubMed]
    [Google Scholar]
  24. de Rosa M, Gambacorta A, Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev 1986; 50:70–80[PubMed]
    [Google Scholar]
  25. Peretó J, López-García P, Moreira D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 2004; 29:469–477 [View Article][PubMed]
    [Google Scholar]
  26. Lombard J, López-García P, Moreira D. Phylogenomic investigation of phospholipid synthesis in archaea. Archaea 2012; 2012:1–13 [View Article][PubMed]
    [Google Scholar]
  27. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951; 62:293–300[PubMed]
    [Google Scholar]
  28. Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 2014; 1837:1130–1147 [View Article][PubMed]
    [Google Scholar]
  29. Ferry JG. How to make a living by exhaling methane. Annu Rev Microbiol 2010; 64:453–473 [View Article][PubMed]
    [Google Scholar]
  30. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  33. Zehnder AJ, Huser BA, Brock TD, Wuhrmann K. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 1980; 124:1–11 [View Article][PubMed]
    [Google Scholar]
  34. Fathepure BZ. Isolation and characterization of an aceticlastic methanogen from a biogas digester. FEMS Microbiol Lett 1983; 19:151–156 [View Article]
    [Google Scholar]
  35. Patel GB, Sprott GD. Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 1990; 40:79–82 [View Article]
    [Google Scholar]
  36. Sakai S, Imachi H, Hanada S, Ohashi A, Harada H et al. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 2008; 58:929–936 [View Article][PubMed]
    [Google Scholar]
  37. Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T et al. Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 2011; 6:e22898 [View Article][PubMed]
    [Google Scholar]
  38. Walker CB, de La Torre JR, Klotz MG, Urakawa H, Pinel N et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 2010; 107:8818–8823 [View Article][PubMed]
    [Google Scholar]
  39. Mihara Y, Rachi H, Nishio Y, Katashkina JY, Kazieva ED et al. Method of producing isoprene monomer. Us2015275233(a1)
  40. Bork P, Sander C, Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 1993; 2:31–40 [View Article][PubMed]
    [Google Scholar]
  41. Rossoni L, Hall SJ, Eastham G, Licence P, Stephens G. The putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol 2015; 81:2625–2634 [View Article][PubMed]
    [Google Scholar]
  42. Sauret-Güeto S, Ramos-Valdivia A, Ibáñez E, Boronat A, Rodríguez-Concepción M. Identification of lethal mutations in Escherichia coli genes encoding enzymes of the methylerythritol phosphate pathway. Biochem Biophys Res Commun 2003; 307:408–415 [View Article][PubMed]
    [Google Scholar]
  43. Hashemi M, Hoshyar R, Ande SR, Chen QM, Solomon C et al. Mevalonate cascade and its regulation in cholesterol metabolism in different tissues in health and disease. Curr Mol Pharmacol 2017; 10:13–26 [View Article][PubMed]
    [Google Scholar]
  44. Sivy TL, Fall R, Rosenstiel TN. Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem 2011; 75:2376–2383 [View Article][PubMed]
    [Google Scholar]
  45. Houten SM, Wanders RJ, Waterham HR. Biochemical and genetic aspects of mevalonate kinase and its deficiency. Biochim Biophys Acta 2000; 1529:19–32 [View Article][PubMed]
    [Google Scholar]
  46. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43:D447–D452 [View Article][PubMed]
    [Google Scholar]
  47. Fu Z, Voynova NE, Herdendorf TJ, Miziorko HM, Kim JJ. Biochemical and structural basis for feedback inhibition of mevalonate kinase and isoprenoid metabolism. Biochemistry 2008; 47:3715–3724 [View Article][PubMed]
    [Google Scholar]
  48. Schneiders MS, Houten SM, Turkenburg M, Wanders RJ, Waterham HR. Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency. Arthritis Rheum 2006; 54:2306–2313 [View Article][PubMed]
    [Google Scholar]
  49. Qiu Y, Li D. Bifunctional inhibitors of mevalonate kinase and mevalonate 5-diphosphate decarboxylase. Org Lett 2006; 8:1013–1016 [View Article][PubMed]
    [Google Scholar]
  50. Gharehbeglou M, Arjmand G, Haeri MR, Khazeni M. Nonselective mevalonate kinase inhibitor as a novel class of antibacterial agents. Cholesterol 2015; 2015:147601 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000510
Loading
/content/journal/micro/10.1099/mic.0.000510
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error