1887

Abstract

Small regulatory RNAs (sRNAs) are the most prominent post-transcriptional regulators in all kingdoms of life. A few of them, e.g. SR1 from Bacillus subtilis, are dual-function sRNAs. SR1 acts as a base-pairing sRNA in arginine catabolism and as an mRNA encoding the small peptide SR1P in RNA degradation. Both functions of SR1 are highly conserved among 23 species of Bacillales. Here, we investigate the interaction between SR1P and GapA by a combination of in vivo and in vitro methods. De novo prediction of the structure of SR1P yielded five models, one of which was consistent with experimental circular dichroism spectroscopy data of a purified, synthetic peptide. Based on this model structure and a comparison between the 23 SR1P homologues, a series of SR1P mutants was constructed and analysed by Northern blotting and co-elution experiments. The known crystal structure of Geobacillus stearothermophilus GapA was used to model SR1P onto this structure. The hypothetical SR1P binding pocket, composed of two α-helices at both termini of GapA, was investigated by constructing and assaying a number of GapA mutants in the presence and absence of wild-type or mutated SR1P. Almost all residues of SR1P located in the two highly conserved motifs are implicated in the interaction with GapA. A critical lysine residue (K332) in the C-terminal α-helix 14 of GapA corroborated the predicted binding pocket.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000505
2017-08-18
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/8/1248.html?itemId=/content/journal/micro/10.1099/mic.0.000505&mimeType=html&fmt=ahah

References

  1. Brantl S. Bacterial chromosome-encoded small regulatory RNAs. Future Microbiol 2009;4:85–103 [CrossRef][PubMed]
    [Google Scholar]
  2. Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 2007;10:102–109 [CrossRef][PubMed]
    [Google Scholar]
  3. Brantl S. Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Future Microbiol 2012;7:853–871 [CrossRef][PubMed]
    [Google Scholar]
  4. Brantl S, Brückner R. Small regulatory RNAs from low-GC Gram-positive bacteria. RNA Biol 2014;11:443–456 [CrossRef][PubMed]
    [Google Scholar]
  5. Gimpel M, Brantl S. Dual-function small regulatory RNAs in bacteria. Mol Microbiol 2017;103:387–397 [CrossRef][PubMed]
    [Google Scholar]
  6. Morfeldt E, Taylor D, von Gabain A, Arvidson S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 1995;14:4569–4577[PubMed]
    [Google Scholar]
  7. Mangold M, Siller M, Roppenser B, Vlaminckx BJ, Penfound TA et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 2004;53:1515–1527 [CrossRef][PubMed]
    [Google Scholar]
  8. Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci USA 2007;104:20454–20459 [CrossRef][PubMed]
    [Google Scholar]
  9. Kaito C, Saito Y, Ikuo M, Omae Y, Mao H et al. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog 2013;9:e1003269 [CrossRef][PubMed]
    [Google Scholar]
  10. Balasubramanian D, Vanderpool CK. Deciphering the interplay between two independent functions of the small RNA regulator SgrS in Salmonella. J Bacteriol 2013;195:4620–4630 [CrossRef][PubMed]
    [Google Scholar]
  11. Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 2002;43:257–265 [CrossRef][PubMed]
    [Google Scholar]
  12. Roberts SA, Scott JR. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol Microbiol 2007;66:1506–1522 [CrossRef][PubMed]
    [Google Scholar]
  13. Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS et al. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 2011;80:868–885 [CrossRef][PubMed]
    [Google Scholar]
  14. Licht A, Preis S, Brantl S. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Mol Microbiol 2005;58:189–206 [CrossRef][PubMed]
    [Google Scholar]
  15. Heidrich N, Chinali A, Gerth U, Brantl S. The small untranslated RNA SR1 from the B. subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 2006;62:520–536 [CrossRef][PubMed]
    [Google Scholar]
  16. Heidrich N, Moll I, Brantl S. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res 2007;35:4331–4346 [CrossRef][PubMed]
    [Google Scholar]
  17. Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S. A dual-function sRNA from Bacillus subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Mol Microbiol 2010;76:990–1009 [CrossRef][PubMed]
    [Google Scholar]
  18. Licht A, Brantl S. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. J Mol Biol 2006;364:434–448 [CrossRef][PubMed]
    [Google Scholar]
  19. Licht A, Brantl S. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. J Biol Chem 2009;284:30032–30038 [CrossRef][PubMed]
    [Google Scholar]
  20. Licht A, Golbik R, Brantl S. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. J Mol Biol 2008;380:17–30 [CrossRef][PubMed]
    [Google Scholar]
  21. Gimpel M, Brantl S. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA. RNA Biol 2016;13:916–926 [CrossRef][PubMed]
    [Google Scholar]
  22. Gimpel M, Preis H, Barth E, Gramzow L, Brantl S. SR1–a small RNA with two remarkably conserved functions. Nucleic Acids Res 2012;40:11659–11672 [CrossRef][PubMed]
    [Google Scholar]
  23. Didierjean C, Corbier C, Fatih M, Favier F, Boschi-Muller S et al. Crystal structure of two ternary complexes of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus with NAD and D-glyceraldehyde 3-phosphate. J Biol Chem 2003;278:12968–12976 [CrossRef][PubMed]
    [Google Scholar]
  24. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 1984;310:207–211 [CrossRef][PubMed]
    [Google Scholar]
  25. Gimpel M, Brantl S. Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis. J Microbiol Methods 2012;91:312–317 [CrossRef][PubMed]
    [Google Scholar]
  26. Brantl S, Wagner EG. Dual function of the copR gene product of plasmid pIP501. J Bacteriol 1997;179:7016–7024 [CrossRef][PubMed]
    [Google Scholar]
  27. Preis H, Eckart RA, Gudipati RK, Heidrich N, Brantl S. CodY activates transcription of a small RNA in Bacillus subtilis. J Bacteriol 2009;191:5446–5457 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004;32:W526–W531 [CrossRef][PubMed]
    [Google Scholar]
  29. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  30. Böhm G, Muhr R, Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 1992;5:191–195 [CrossRef][PubMed]
    [Google Scholar]
  31. Moniot S, Bruno S, Vonrhein C, Didierjean C, Boschi-Muller S et al. Trapping of the thioacylglyceraldehyde-3-phosphate dehydrogenase intermediate from Bacillus stearothermophilus. Direct evidence for a flip-flop mechanism. J Biol Chem 2008;283:21693–21702 [CrossRef][PubMed]
    [Google Scholar]
  32. Impens F, Rolhion N, Radoshevich L, Bécavin C, Duval M et al. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat Microbiol 2017;2:17005 [CrossRef][PubMed]
    [Google Scholar]
  33. Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D et al. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics 2009;8:1350–1360 [CrossRef][PubMed]
    [Google Scholar]
  34. Lloyd CR, Park S, Fei J, Vanderpool CK. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 2017;199:e00869-16 [CrossRef][PubMed]
    [Google Scholar]
  35. Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G et al. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 2000;275:14031–14037 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbour, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  37. Geissendörfer M, Hillen W. Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl Microbiol Biotechnol 1990;33:657–663 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000505
Loading
/content/journal/micro/10.1099/mic.0.000505
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error