1887

Abstract

uses choline as a source of carbon and nitrogen, and also for the synthesis of glycine betaine, an osmoprotectant under stress conditions such as drought and salinity. The transcription factor GbdR is the specific regulator of choline metabolism and it belongs to the Arac/XylS family of transcriptional regulators. Despite the link between choline catabolism and bacterial pathogenicity, regulation has not been explored in detail. In the present work, we describe how transcription can be initiated from a σ-dependent promoter. transcription can be activated by NtrC in the absence of a preferential nitrogen source, by CbrB in the absence of a preferential carbon source, and by the integration host factor favouring DNA bending. In addition, we found that BetI negatively regulates expression in the absence of choline. We identified two overlapping BetI binding sites in the promoter sequence, providing an additional example of σ-promoter down-regulation. Based on our findings, we propose a model for regulation and its impact on choline metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000502
2017-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/9/1343.html?itemId=/content/journal/micro/10.1099/mic.0.000502&mimeType=html&fmt=ahah

References

  1. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article][PubMed]
    [Google Scholar]
  2. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic Pseudomonads: a taxonomic study. J Gen Microbiol 1966; 43:159–271 [View Article][PubMed]
    [Google Scholar]
  3. Tricot C, Piérard A, Stalon V. Comparative studies on the degradation of guanidino and ureido compounds by Pseudomonas. J Gen Microbiol 1990; 136:2307–2317 [View Article][PubMed]
    [Google Scholar]
  4. Lisa TA, Lucchesi GI, Domenech CE. Pathogenicity of Pseudomonas aeruginosa and its relationship to the choline metabolism through the action of cholinesterase, acid phosphatase, and phospholipase C. Curr Microbiol 1994; 29:193–199 [View Article]
    [Google Scholar]
  5. Nishijyo T, Haas D, Itoh Y. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 2001; 40:917–931 [View Article][PubMed]
    [Google Scholar]
  6. Lisa A, Beassoni P. A glance on Pseudomonas aeruginosa phosphorylcholine phosphatase, an enzyme whose synthesis depends on the presence of choline in its environment. Commun Curr Res Educ Top Trends Appl Microbiol 2007255–262
    [Google Scholar]
  7. Caminiti SP, Young SL. The pulmonary surfactant system. Hosp Pract 1990; 26:87–100 [View Article]
    [Google Scholar]
  8. Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta - Mol Basis Dis 1998; 1408:90–108 [View Article]
    [Google Scholar]
  9. Pesin SR, Candia OA. Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Invest Ophthalmol Vis Sci 1982; 22:651–659[PubMed]
    [Google Scholar]
  10. Wargo MJ, Gross MJ, Rajamani S, Allard JL, Lundblad LK et al. Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2011; 184:345–354 [View Article][PubMed]
    [Google Scholar]
  11. Jackson RW, Zhang XX, Silby MW. Identification and mutational activation of niche-specific genes provide insight into regulatory networks and bacterial function in complex environments. Mol Microb Ecol Rhizosph 2013; 2:875–882 [CrossRef]
    [Google Scholar]
  12. Wargo MJ. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection. PLoS One 2013; 8:e56850 [View Article][PubMed]
    [Google Scholar]
  13. Chen C, Li S, McKeever DR, Beattie GA. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts. Plant J 2013; 75:891–902 [View Article][PubMed]
    [Google Scholar]
  14. Lisa TA, Casale CH, Domenech CE. Cholinesterase, acid phosphatase, and phospholipase C of Pseudomonas aeruginosa under hyperosmotic conditions in a high-phosphate medium. Curr Microbiol 1994; 28:71–76 [View Article]
    [Google Scholar]
  15. Sánchez DG, Otero LH, Hernández CM, Serra AL, Encarnación S et al. A Pseudomonas aeruginosa PAO1 acetylcholinesterase is encoded by the PA4921 gene and belongs to the SGNH hydrolase family. Microbiol Res 2012; 167:317–325 [View Article][PubMed]
    [Google Scholar]
  16. Salvano MA, Lisa TA, Domenech CE. Choline transport in Pseudomonas aeruginosa. Mol Cell Biochem 1989; 85:81–89 [View Article][PubMed]
    [Google Scholar]
  17. Garber N, Nachshon I. Localization of cholinesterase in Pseudomonas aeruginosa strain K. J Gen Microbiol 1980; 117:279–283 [View Article][PubMed]
    [Google Scholar]
  18. Lisa TA, Garrido MN, Domenech CE. Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine. Mol Cell Biochem 1983; 50:149–155 [View Article][PubMed]
    [Google Scholar]
  19. Malek AA, Chen C, Wargo MJ, Beattie GA, Hogan DA. Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism. J Bacteriol 2011; 193:3033–3041 [View Article][PubMed]
    [Google Scholar]
  20. Bremer E. Liberate and grab it, ingest and digest it: the GbdR regulon of the pathogen Pseudomonas aeruginosa. J Bacteriol 2014; 196:3–6 [View Article][PubMed]
    [Google Scholar]
  21. Hampel KJ, Labauve AE, Meadows JA, Fitzsimmons LF, Nock AM et al. Characterization of the GbdR regulon in Pseudomonas aeruginosa. J Bacteriol 2014; 196:7–15 [View Article][PubMed]
    [Google Scholar]
  22. Velasco-García R, Mújica-Jiménez C, Mendoza-Hernández G, Muñoz-Clares RA. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. J Bacteriol 1999; 181:1292–1300[PubMed]
    [Google Scholar]
  23. Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J et al. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 1991; 5:1049–1064 [View Article][PubMed]
    [Google Scholar]
  24. Rkenes TP, Lamark T, Strøm AR. DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J Bacteriol 1996; 178:1663–1670 [View Article][PubMed]
    [Google Scholar]
  25. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Brennan R et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:1–31 [CrossRef]
    [Google Scholar]
  26. Massimelli MJ, Sánchez DG, Buchieri MV, Olvera L, Beassoni PR et al. Choline catabolism, σ54 factor and NtrC are required for the full expression of the Pseudomonas aeruginosa phosphorylcholine phosphatase gene. Microbiol Res 2011; 166:380–390 [View Article][PubMed]
    [Google Scholar]
  27. Li W, Lu CD. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. J Bacteriol 2007; 189:5413–5420 [View Article][PubMed]
    [Google Scholar]
  28. Zhang XX, Rainey PB. Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25. Genetics 2008; 178:185–195 [View Article][PubMed]
    [Google Scholar]
  29. Wargo MJ, Szwergold BS, Hogan DA. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 2008; 190:2690–2699 [View Article][PubMed]
    [Google Scholar]
  30. Fitzsimmons LF, Hampel KJ, Wargo MJ. Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa. J Bacteriol 2012; 194:4718–4726 [View Article][PubMed]
    [Google Scholar]
  31. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112–2120 [View Article][PubMed]
    [Google Scholar]
  32. Willsey GG, Wargo MJ. Sarcosine catabolism in Pseudomonas aeruginosa is transcriptionally regulated by SouR. J Bacteriol 2015; 198:301–310 [View Article][PubMed]
    [Google Scholar]
  33. Belyaeva TA, Wade JT, Webster CL, Howard VJ, Thomas MS et al. Transcription activation at the Escherichia coli melAB promoter: the role of MelR and the cyclic AMP receptor protein. Mol Microbiol 2000; 36:211–222 [View Article][PubMed]
    [Google Scholar]
  34. Martin RG, Jair KW, Wolf RE, Rosner JL. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J Bacteriol 1996; 178:2216–2223 [View Article][PubMed]
    [Google Scholar]
  35. González-Pérez MM, Ramos JL, Marqués S. Cellular XylS levels are a function of transcription of xylS from two independent promoters and the differential efficiency of translation of the two mRNAs. J Bacteriol 2004; 186:1898–1901 [View Article][PubMed]
    [Google Scholar]
  36. Lucchesi GI, Lisa TA, Domenech CE. Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. FEMS Microbiol Lett 1989; 57:335–338 [View Article][PubMed]
    [Google Scholar]
  37. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual vol. 1 New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  38. Choi KH, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 2006; 1:153–161 [View Article][PubMed]
    [Google Scholar]
  39. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989; 77:51–59[PubMed] [CrossRef]
    [Google Scholar]
  40. Choi KH, Schweizer HP. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 2005; 5:30 [View Article][PubMed]
    [Google Scholar]
  41. Miller JH. Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory press; 1972
    [Google Scholar]
  42. Abdou L, Chou HT, Haas D, Lu CD. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J Bacteriol 2011; 193:2784–2792 [View Article][PubMed]
    [Google Scholar]
  43. Hervás AB, Canosa I, Santero E. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. J Bacteriol 2008; 190:416–420 [View Article][PubMed]
    [Google Scholar]
  44. Pérez-Martín J, Rojo F, de Lorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 1994; 58:268–290[PubMed]
    [Google Scholar]
  45. Goosen N, van de Putte P. The regulation of transcription initiation by integration host factor. Mol Microbiol 1995; 16:1–7 [View Article][PubMed]
    [Google Scholar]
  46. Wassem R, de Souza EM, Yates MG, Pedrosa FD, Buck M. Two roles for integration host factor at an enhancer-dependent nifA promoter. Mol Microbiol 2000; 35:756–764 [View Article][PubMed]
    [Google Scholar]
  47. Hales LM, Gumport RI, Gardner JF. Determining the DNA sequence elements required for binding integration host factor to two different target sites. J Bacteriol 1994; 176:2999–3006 [View Article][PubMed]
    [Google Scholar]
  48. Porrúa O, García-González V, Santero E, Shingler V, Govantes F. Activation and repression of a σN-dependent promoter naturally lacking upstream activation sequences. Mol Microbiol 2009; 73:419–433 [View Article][PubMed]
    [Google Scholar]
  49. Bush M, Dixon R. The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2012; 76:497–529 [View Article][PubMed]
    [Google Scholar]
  50. Velasco-García R, Villalobos MA, Ramírez-Romero MA, Mújica-Jiménez C, Iturriaga G et al. Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt. Arch Microbiol 2006; 185:14–22 [View Article][PubMed]
    [Google Scholar]
  51. Scholz A, Stahl J, de Berardinis V, Müller V, Averhoff B. Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine betaine synthesis through a choline-responsive BetI repressor. Environ Microbiol doi: 10.1111/1462-2920.13148 [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  52. Kovacikova G, Skorupski K. Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 2001; 41:393–407 [View Article][PubMed]
    [Google Scholar]
  53. Li Z, Demple B. Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol Microbiol 1996; 20:937–945 [View Article][PubMed]
    [Google Scholar]
  54. Martin RG, Gillette WK, Rosner JL. Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 2000; 35:623–634 [View Article][PubMed]
    [Google Scholar]
  55. Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43:355–370 [View Article][PubMed]
    [Google Scholar]
  56. Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. Int J Biotechnol Wellness Ind 2013; 2:101–124 [View Article][PubMed]
    [Google Scholar]
  57. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1983; 1:784–791 [View Article]
    [Google Scholar]
  58. Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D. Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:2227–2235 [View Article][PubMed]
    [Google Scholar]
  59. Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305–4313 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000502
Loading
/content/journal/micro/10.1099/mic.0.000502
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error