1887

Abstract

DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and Δ mutant were compared. The salient feature of the phenotype of null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprA was cloned and overexpressed, and the biological activities of DprA were further investigated. DprA binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprA dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBwere demonstrated. is co-expressed with a downstream gene of unknown function, and the gene encoding topoisomerase 1, .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000489
2017-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/7/1016.html?itemId=/content/journal/micro/10.1099/mic.0.000489&mimeType=html&fmt=ahah

References

  1. Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 2007;369:2196–2210 [CrossRef][PubMed]
    [Google Scholar]
  2. Davidsen T, Tønjum T. Meningococcal genome dynamics. Nat Rev Microbiol 2006;4:11–22 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen I, Christie PJ, Dubnau D. The ins and outs of DNA transfer in bacteria. Science 2005;310:1456–1460 [CrossRef][PubMed]
    [Google Scholar]
  4. Froholm LO, Jyssum K, Bovre K. Electron microscopical and cultural features of Neisseria meningitidis competence variants. Acta Pathol Microbiol Scand B Microbiol Immunol 1973;81:525–537 [CrossRef][PubMed]
    [Google Scholar]
  5. Goodman SD, Scocca JJ. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 1988;85:6982–6986 [CrossRef][PubMed]
    [Google Scholar]
  6. Ambur OH, Frye SA, Tønjum T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 2007;189:2077–2085 [CrossRef][PubMed]
    [Google Scholar]
  7. Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T et al. The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 2007;153:1593–1603 [CrossRef][PubMed]
    [Google Scholar]
  8. Burton B, Dubnau D. Membrane-associated DNA transport machines. Cold Spring Harb Perspect Biol 2010;2:a000406 [CrossRef][PubMed]
    [Google Scholar]
  9. Johnston C, Martin B, Fichant G, Polard P, Claverys JP et al. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 2014;12:181–196 [CrossRef][PubMed]
    [Google Scholar]
  10. Carbonnelle E, Helaine S, Nassif X, Pelicic V. A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 2006;61:1510–1522 [CrossRef][PubMed]
    [Google Scholar]
  11. Sun YH, Exley R, Li Y, Goulding D, Tang C. Identification and characterization of genes required for competence in Neisseria meningitidis. J Bacteriol 2005;187:3273–3276 [CrossRef][PubMed]
    [Google Scholar]
  12. Beernink HT, Morrical SW. RMPs: recombination/replication mediator proteins. Trends Biochem Sci 1999;24:385–389 [CrossRef][PubMed]
    [Google Scholar]
  13. Koomey JM, Falkow S. Cloning of the recA gene of Neisseria gonorrhoeae and construction of gonococcal recA mutants. J Bacteriol 1987;169:790–795 [CrossRef][PubMed]
    [Google Scholar]
  14. Attaiech L, Olivier A, Mortier-Barrière I, Soulet AL, Granadel C et al. Role of the single-stranded DNA–binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity. PLoS Genet 2011;7:e1002156 [CrossRef][PubMed]
    [Google Scholar]
  15. Yadav T, Carrasco B, Myers AR, George NP, Keck JL et al. Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins. Nucleic Acids Res 2012;40:5546–5559 [CrossRef][PubMed]
    [Google Scholar]
  16. Yadav T, Carrasco B, Serrano E, Alonso JC. Roles of Bacillus subtilis DprA and SsbA in RecA-mediated genetic recombination. J Biol Chem 2014;289:27640–27652 [CrossRef][PubMed]
    [Google Scholar]
  17. Smeets LC, Becker SC, Barcak GJ, Vandenbroucke-Grauls CM, Bitter W et al. Functional characterization of the competence protein DprA/Smf in Escherichia coli. FEMS Microbiol Lett 2006;263:223–228 [CrossRef][PubMed]
    [Google Scholar]
  18. Duffin PM, Barber DA. DprA is required for natural transformation and affects pilin variation in Neisseria gonorrhoeae. Microbiology 2016;162:1620–1628 [CrossRef][PubMed]
    [Google Scholar]
  19. Karudapuram S, Zhao X, Barcak GJ. DNA sequence and characterization of Haemophilus influenzae dprA+, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol 1995;177:3235–3240 [CrossRef][PubMed]
    [Google Scholar]
  20. Mortier-Barrière I, Velten M, Dupaigne P, Mirouze N, Piétrement O et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 2007;130:824–836 [CrossRef][PubMed]
    [Google Scholar]
  21. Quevillon-Cheruel S, Campo N, Mirouze N, Mortier-Barrière I, Brooks MA et al. Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proc Natl Acad Sci USA 2012;109:E2466E2475 [CrossRef][PubMed]
    [Google Scholar]
  22. Yadav T, Carrasco B, Hejna J, Suzuki Y, Takeyasu K et al. Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA. J Biol Chem 2013;288:22437–22450 [CrossRef][PubMed]
    [Google Scholar]
  23. Bergé M, Mortier-Barrière I, Martin B, Claverys JP. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 2003;50:527–536 [CrossRef][PubMed]
    [Google Scholar]
  24. Weng L, Piotrowski A, Morrison DA. Exit from competence for genetic transformation in Streptococcus pneumoniae is regulated at multiple levels. PLoS One 2013;8:e64197 [CrossRef][PubMed]
    [Google Scholar]
  25. Mirouze N, Bergé MA, Soulet AL, Mortier-Barrière I, Quentin Y et al. Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. Proc Natl Acad Sci USA 2013;110:E1035E1044 [CrossRef][PubMed]
    [Google Scholar]
  26. Kramer N, Hahn J, Dubnau D. Multiple interactions among the competence proteins of Bacillus subtilis. Mol Microbiol 2007;65:454–464 [CrossRef][PubMed]
    [Google Scholar]
  27. Redfield RJ, Cameron AD, Qian Q, Hinds J, Ali TR et al. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 2005;347:735–747 [CrossRef][PubMed]
    [Google Scholar]
  28. Dagkessamanskaia A, Moscoso M, Hénard V, Guiral S, Overweg K et al. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 2004;51:1071–1086 [CrossRef][PubMed]
    [Google Scholar]
  29. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 2004;51:1051–1070 [CrossRef][PubMed]
    [Google Scholar]
  30. Sinha S, Cameron AD, Redfield RJ. Sxy induces a CRP-S regulon in Escherichia coli. J Bacteriol 2009;191:5180–5195 [CrossRef][PubMed]
    [Google Scholar]
  31. Wang W, Ding J, Zhang Y, Hu Y, Wang DC. Structural insights into the unique single-stranded DNA-binding mode of Helicobacter pylori DprA. Nucleic Acids Res 2014;42:3478–3491 [CrossRef][PubMed]
    [Google Scholar]
  32. Karudapuram S, Barcak GJ. The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol 1997;179:4815–4820 [CrossRef][PubMed]
    [Google Scholar]
  33. Humbert O, Dorer MS, Salama NR. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Mol Microbiol 2011;79:387–401 [CrossRef][PubMed]
    [Google Scholar]
  34. Chandler MS, Smith RA. Characterization of the Haemophilus influenzae topA locus: DNA topoisomerase I is required for genetic competence. Gene 1996;169:25–31 [CrossRef][PubMed]
    [Google Scholar]
  35. Parham C, Cunningham E, Mcginnis E. Differential effects of DNA gyrase inhibitors on the genetic transformation of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1988;32:1788–1792 [CrossRef][PubMed]
    [Google Scholar]
  36. Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012;47:531–555 [CrossRef][PubMed]
    [Google Scholar]
  37. Pansegrau W, Miele L, Lurz R, Lanka E. Nucleotide sequence of the kanamycin resistance determinant of plasmid RP4: homology to other aminoglycoside 3'-phosphotransferases. Plasmid 1987;18:193–204 [CrossRef][PubMed]
    [Google Scholar]
  38. Tønjum T, Freitag NE, Namork E, Koomey M. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol 1995;16:451–464 [CrossRef][PubMed]
    [Google Scholar]
  39. Ambur OH, Frye SA, Nilsen M, Hovland E, Tønjum T. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis. PLoS One 2012;7:e39742 [CrossRef][PubMed]
    [Google Scholar]
  40. Campsall PA, Laupland KB, Niven DJ. Severe meningococcal infection: a review of epidemiology, diagnosis, and management. Crit Care Clin 2013;29:393–409 [CrossRef][PubMed]
    [Google Scholar]
  41. Tobiason DM, Seifert HS. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 2006;4:e185 [CrossRef][PubMed]
    [Google Scholar]
  42. Pagliarulo C, Salvatore P, de Vitis LR, Colicchio R, Monaco C et al. Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 2004;51:1757–1772 [CrossRef][PubMed]
    [Google Scholar]
  43. Bill NJ, Washington JA 2nd. Comparison of in vitro activity of cephalexin, cephradine, and cefaclor. Antimicrob Agents Chemother 1977;11:470–474 [CrossRef][PubMed]
    [Google Scholar]
  44. Ebahbs KS. Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 1986;5:3074
    [Google Scholar]
  45. Bernander R, Stokke T, Boye E. Flow cytometry of bacterial cells: comparison between different flow cytometers and different DNA stains. Cytometry 1998;31:29–36 [CrossRef][PubMed]
    [Google Scholar]
  46. Torheim NK, Boye E, Løbner-Olesen A, Stokke T, Skarstad K. The Escherichia coli SeqA protein destabilizes mutant DnaA204 protein. Mol Microbiol 2000;37:629–638 [CrossRef][PubMed]
    [Google Scholar]
  47. FlowJo. FlowJo v10 data analysis software. 2013-2016;http://www.FlowJo.com/download/index.html
  48. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2012;40:D13–D25 [CrossRef][PubMed]
    [Google Scholar]
  49. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  50. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  51. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  52. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011;39:D561–D568 [CrossRef][PubMed]
    [Google Scholar]
  53. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al. Pfam: the protein families database. Nucleic Acids Res 2014;42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  54. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995;247:536–540 [CrossRef][PubMed]
    [Google Scholar]
  55. Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009;4:363–371 [CrossRef][PubMed]
    [Google Scholar]
  56. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008;9:40 [CrossRef][PubMed]
    [Google Scholar]
  57. Ye Y, Godzik A. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 2003;19:ii246–ii255 [CrossRef][PubMed]
    [Google Scholar]
  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  59. Alm EJ, Huang KH, Price MN, Koche RP, Keller K et al. The MicrobesOnline Web site for comparative genomics. Genome Res 2005;15:1015–1022 [CrossRef][PubMed]
    [Google Scholar]
  60. Solovyev V, Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In Li RW. (editor) Metagenomics and Its Applications in Agriculture, Biomedicine, and Environmental Studies Hauppauge, NY: Nova Science Publishers; 2011; pp.61–78
    [Google Scholar]
  61. Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001;26:51–56 [CrossRef][PubMed]
    [Google Scholar]
  62. Kingsford CL, Ayanbule K, Salzberg SL. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 2007;8:R22 [CrossRef][PubMed]
    [Google Scholar]
  63. Benam AV, Lång E, Alfsnes K, Fleckenstein B, Rowe AD et al. Structure-function relationships of the competence lipoprotein ComL and SSB in meningococcal transformation. Microbiology 2011;157:1329–1342 [CrossRef][PubMed]
    [Google Scholar]
  64. Balasingham SV, Zegeye ED, Homberset H, Rossi ML, Laerdahl JK et al. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB. PLoS One 2012;7:e36960 [CrossRef][PubMed]
    [Google Scholar]
  65. Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Tønjum T. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. Microbiology 2012;158:1982–1993 [CrossRef][PubMed]
    [Google Scholar]
  66. Beverly SM. Enzymatic amplification of RNA by PCR (RT-PCR). Curr Protoc Mol Biol 2001;Chapter 15:Unit 15.5 [CrossRef][PubMed]
    [Google Scholar]
  67. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 2011;9:342–353 [CrossRef][PubMed]
    [Google Scholar]
  68. Raghunathan S, Ricard CS, Lohman TM, Waksman G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-Å resolution. Proc Natl Acad Sci USA 1997;94:6652–6657 [CrossRef][PubMed]
    [Google Scholar]
  69. Dahanukar A, Walker JA, Wharton RP. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol Cell 1999;4:209–218 [CrossRef][PubMed]
    [Google Scholar]
  70. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 2010;38:D396–D400 [CrossRef][PubMed]
    [Google Scholar]
  71. Kim CA, Bowie JU. SAM domains: uniform structure, diversity of function. Trends Biochem Sci 2003;28:625–628 [CrossRef][PubMed]
    [Google Scholar]
  72. Dwivedi GR, Sharma E, Rao DN. Helicobacter pylori DprA alleviates restriction barrier for incoming DNA. Nucleic Acids Res 2013;41:3274–3288 [CrossRef][PubMed]
    [Google Scholar]
  73. Méjean V, Claverys JP. DNA processing during entry in transformation of Streptococcus pneumoniae. J Biol Chem 1993;268:5594–5599[PubMed]
    [Google Scholar]
  74. Dubnau D. DNA uptake in bacteria. Annu Rev Microbiol 1999;53:217–244 [CrossRef][PubMed]
    [Google Scholar]
  75. Hamilton HL, Dillard JP. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 2006;59:376–385 [CrossRef][PubMed]
    [Google Scholar]
  76. Chaussee MS, Hill SA. Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae. J Bacteriol 1998;180:5117–5122[PubMed]
    [Google Scholar]
  77. Elkins C, Thomas CE, Seifert HS, Sparling PF. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 1991;173:3911–3913 [CrossRef][PubMed]
    [Google Scholar]
  78. Lane D, Prentki P, Chandler M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev 1992;56:509–528[PubMed]
    [Google Scholar]
  79. Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S et al. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLoS Genet 2009;5:e1000630 [CrossRef][PubMed]
    [Google Scholar]
  80. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994;58:401–465[PubMed]
    [Google Scholar]
  81. Mehr IJ, Seifert HS. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 1998;30:697–710 [CrossRef][PubMed]
    [Google Scholar]
  82. Lisboa J, Andreani J, Sanchez D, Boudes M, Collinet B et al. Molecular determinants of the DprA−RecA interaction for nucleation on ssDNA. Nucleic Acids Res 2014;42:7395–7408 [CrossRef][PubMed]
    [Google Scholar]
  83. Osbourn AE, Field B. Operons. Cell Mol Life Sci 2009;66:3755–3775 [CrossRef][PubMed]
    [Google Scholar]
  84. Campbell EA, Choi SY, Masure HR. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 1998;27:929–939 [CrossRef][PubMed]
    [Google Scholar]
  85. Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y et al. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 2002;184:2344–2351 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000489
Loading
/content/journal/micro/10.1099/mic.0.000489
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error