1887

Abstract

An Acinetobacter strain, designated ACE, was isolated in the laboratory. Phylogenetic tests and average nucleotide identity value comparisons suggested that ACE belongs to the species Acinetobacter schindleri. We report for the first time the complete genome sequence of an A. schindleri strain, which consists of a single circular chromosome of 3 001 209 bp with an overall DNA G+C content of 42.9 mol% and six plasmids that account for 266 844 bp of extrachromosomal material. The presence or absence of genes related to carbon catabolism and antibiotic resistance were in agreement with the phenotypic characterization of ACE. This strain grew faster and with a higher biomass yield on acetate than the reference strain Acinetobacter baylyi ADP1. However, ACE did not use aromatic compounds and was unable to grow on common carbon sources, such as glucose, xylose, glycerol or citrate. The gluconeogenic and the catechol pathways are complete in ACE, but compounds that are converted to protocatechuate did not sustain growth since some genes of this pathway are missing. Likewise, this strain could not grow on glucose because it lacks the genes of the Entner–Doudoroff pathway. Minimal inhibitory concentration data showed that ACE was susceptible to most of the antimicrobial agents recommended for the clinical treatment of Acinetobacter spp. Some genes related to a possible human–microbe interaction were found in the ACE genome. ACE is likely to have a low pathogenic risk, as is the case with other A. schindleri strains. These results provide a valuable reference for broadening the knowledge of the biology of Acinetobacter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000488
2017-07-03
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/7/1052.html?itemId=/content/journal/micro/10.1099/mic.0.000488&mimeType=html&fmt=ahah

References

  1. Towner K. The genus Acinetobacter. Prokaryotes 2006;6:746–758
    [Google Scholar]
  2. Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 2011;26:101–112 [CrossRef][PubMed]
    [Google Scholar]
  3. Metzgar D, Bacher JM, Pezo V, Reader J, Döring V et al. Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 2004;32:5780–5790 [CrossRef][PubMed]
    [Google Scholar]
  4. Young DM, Parke D, Ornston LN. Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu Rev Microbiol 2005;59:519–551 [CrossRef][PubMed]
    [Google Scholar]
  5. Elliott KT, Neidle EL. Acinetobacter baylyi ADP1: transforming the choice of model organism. IUBMB Life 2011;63:1075–1080 [CrossRef][PubMed]
    [Google Scholar]
  6. de Berardinis V, Durot M, Weissenbach J, Salanoubat M. Acinetobacter baylyi ADP1 as a model for metabolic system biology. Curr Opin Microbiol 2009;12:568–576 [CrossRef][PubMed]
    [Google Scholar]
  7. Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, van der Reijden TJ et al. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 2001;51:1891–1899 [CrossRef][PubMed]
    [Google Scholar]
  8. Dortet L, Legrand P, Soussy CJ, Cattoir V. Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol 2006;44:4471–4478 [CrossRef][PubMed]
    [Google Scholar]
  9. Carr EL, Kämpfer P, Patel BK, Gürtler V, Seviour RJ. Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 2003;53:953–963 [CrossRef][PubMed]
    [Google Scholar]
  10. Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev 2005;69:12–50 [CrossRef][PubMed]
    [Google Scholar]
  11. Flores N, de Anda R, Flores S, Escalante A, Hernández G et al. Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Mol Microbiol Biotechnol 2005;8:209–221 [CrossRef]
    [Google Scholar]
  12. Oh MK, Rohlin L, Kao KC, Liao JC. Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 2002;277:13175–13183 [CrossRef][PubMed]
    [Google Scholar]
  13. El-Mansi M, Cozzone AJ, Shiloach J, Eikmanns BJ. Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Curr Opin Microbiol 2006;9:173–179 [CrossRef][PubMed]
    [Google Scholar]
  14. Sigala JC, Flores S, Flores N, Aguilar C, de Anda R et al. Acetate metabolism in Escherichia coli strains lacking phosphoenolpyruvate: carbohydrate phosphotransferase system; evidence of carbon recycling strategies and futile cycles. J Mol Microbiol Biotechnol 2009;16:224–235 [CrossRef][PubMed]
    [Google Scholar]
  15. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  17. van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from networks. In van Helden J, Toussaint A, Thieffry D. (editors) Bacterial Molecular Networks: Methods and Protocols New York, NY: Springer New York; 2012; pp.281–295[CrossRef]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002;Chapter 2:Unit 2.3 [CrossRef][PubMed]
    [Google Scholar]
  19. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  20. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  21. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578–579 [CrossRef][PubMed]
    [Google Scholar]
  22. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998;8:195–202 [CrossRef][PubMed]
    [Google Scholar]
  23. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  24. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012;28:464–469 [CrossRef][PubMed]
    [Google Scholar]
  25. Deng Y, Li J, Wu S, Zhu Y, Chen YHF. Integrated nr database in protein annotation system and its localization. Comput Eng 2006;32:71–74
    [Google Scholar]
  26. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015;43:D222–D226 [CrossRef][PubMed]
    [Google Scholar]
  27. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 2015;43:D213–D221 [CrossRef][PubMed]
    [Google Scholar]
  28. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006;34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  30. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5:R12 [CrossRef][PubMed]
    [Google Scholar]
  31. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004;32:D277–D280 [CrossRef][PubMed]
    [Google Scholar]
  32. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twentieth Informational Supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2016
    [Google Scholar]
  33. CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard—Ninth Edition. CLSI document M07-A9. 2012
    [Google Scholar]
  34. Fondi M, Bacci G, Brilli M, Papaleo MC, Mengoni A et al. Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evol Biol 2010;10:59 [CrossRef][PubMed]
    [Google Scholar]
  35. Chan JZ, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol 2012;12:302 [CrossRef][PubMed]
    [Google Scholar]
  36. Juni E. Genetics and physiology of Acinetobacter. Annu Rev Microbiol 1978;32:349–371 [CrossRef][PubMed]
    [Google Scholar]
  37. de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 2008;4:174 [CrossRef][PubMed]
    [Google Scholar]
  38. Vaneechoutte M, Young DM, Ornston LN, de Baere T, Nemec A et al. Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol 2006;72:932–936 [CrossRef][PubMed]
    [Google Scholar]
  39. Harwood CS, Parales RE. The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 1996;50:553–590 [CrossRef][PubMed]
    [Google Scholar]
  40. Fischer R, Bleichrodt FS, Gerischer UC. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology 2008;154:3095–3103 [CrossRef][PubMed]
    [Google Scholar]
  41. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011;9:244–253 [CrossRef][PubMed]
    [Google Scholar]
  42. Lewis JA, Horswill AR, Schwem BE, Escalante-Semerena JC. The Tricarballylate utilization (tcuRABC) genes of Salmonella enterica serovar Typhimurium LT2. J Bacteriol 2004;186:1629–1637 [CrossRef][PubMed]
    [Google Scholar]
  43. Durot M, Le Fèvre F, de Berardinis V, Kreimeyer A, Vallenet D et al. Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data. BMC Syst Biol 2008;2:85 [CrossRef][PubMed]
    [Google Scholar]
  44. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S et al. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 2004;32:5766–5779 [CrossRef][PubMed]
    [Google Scholar]
  45. Lin E. et al. Dissimilatory Pathways for Sugars, Polyols, and Carboxylates. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB et al. (editors) Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology, 2nd ed.vol. 1 Washington, DC: ASM Press; 1996; pp.307–342
    [Google Scholar]
  46. Imperi F, Antunes LC, Blom J, Villa L, Iacono M et al. The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity. IUBMB Life 2011;63:1068–1074 [CrossRef][PubMed]
    [Google Scholar]
  47. Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014;71:292–301 [CrossRef][PubMed]
    [Google Scholar]
  48. Cerqueira GM, Peleg AY. Insights into Acinetobacter baumannii pathogenicity. IUBMB Life 2011;63:1055–1060 [CrossRef][PubMed]
    [Google Scholar]
  49. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008;190:8053–8064 [CrossRef][PubMed]
    [Google Scholar]
  50. Poirel L, Bonnin RA, Nordmann P. Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life 2011;63:1061–1067 [CrossRef][PubMed]
    [Google Scholar]
  51. Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 2009;1794:769–781 [CrossRef][PubMed]
    [Google Scholar]
  52. Mcgann P, Milillo M, Clifford RJ, Snesrud E, Stevenson L et al. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance. J Clin Microbiol 2013;51:1942–1944 [CrossRef][PubMed]
    [Google Scholar]
  53. Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 2010;54:24–38 [CrossRef][PubMed]
    [Google Scholar]
  54. Beceiro A, Fernández-Cuenca F, Ribera A, Martínez-Martínez L, Pascual A et al. False extended-spectrum β-lactamase detection in Acinetobacter spp. due to intrinsic susceptibility to clavulanic acid. J Antimicrob Chemother 2008;61:301–308 [CrossRef][PubMed]
    [Google Scholar]
  55. Antunes LC, Imperi F, Carattoli A, Visca P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One 2011;6:e22674 [CrossRef][PubMed]
    [Google Scholar]
  56. Antunes LC, Imperi F, Towner KJ, Visca P. Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates. Res Microbiol 2011;162:279–284 [CrossRef][PubMed]
    [Google Scholar]
  57. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. Feo – transport of ferrous iron into bacteria. Biometals 2006;19:143–157 [CrossRef][PubMed]
    [Google Scholar]
  58. Stintzi A, Barnes C, Xu J, Raymond KN. Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci USA 2000;97:10691–10696 [CrossRef]
    [Google Scholar]
  59. Mihara K, Tanabe T, Yamakawa Y, Funahashi T, Nakao H et al. Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. Microbiology 2004;150:2587–2597 [CrossRef][PubMed]
    [Google Scholar]
  60. Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 2010;64:43–60 [CrossRef][PubMed]
    [Google Scholar]
  61. Choi CH, Lee EY, Lee YC, Park TI, Kim HJ et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol 2005;7:1127–1138 [CrossRef][PubMed]
    [Google Scholar]
  62. McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 2013;37:130–155 [CrossRef][PubMed]
    [Google Scholar]
  63. Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM et al. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 2010;78:1952–1962 [CrossRef][PubMed]
    [Google Scholar]
  64. Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 2009;191:5953–5963 [CrossRef][PubMed]
    [Google Scholar]
  65. Di Nocera PP, Rocco F, Giannouli M, Triassi M, Zarrilli R. Genome organization of epidemic Acinetobacter baumannii strains. BMC Microbiol 2011;11:224 [CrossRef][PubMed]
    [Google Scholar]
  66. Mortensen BL, Skaar EP. Host-microbe interactions that shape the pathogenesis of Acinetobacter baumannii infection. Cell Microbiol 2012;14:1336–1344 [CrossRef][PubMed]
    [Google Scholar]
  67. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 2007;21:601–614 [CrossRef][PubMed]
    [Google Scholar]
  68. Abbott BJ, Laskin AI, McCoy CJ. Growth of Acinetobacter calcoaceticus on ethanol. Appl Microbiol 1973;25:787–792[PubMed]
    [Google Scholar]
  69. Ensley BD, Finnerty WR. Influences of growth substrates and oxygen on the electron transport system in Acinetobacter sp. HO1-N. J Bacteriol 1980;142:859–868[PubMed]
    [Google Scholar]
  70. Preez JC, Toerien DF, Lategan PM. Growth parameters of Acinetobacter calcoaceticus on acetate and ethanol. Eur J Appl Microbiol Biotechnol 1981;13:45–53 [CrossRef]
    [Google Scholar]
  71. Santala S, Karp M, Santala V. Rationally engineered synthetic coculture for improved biomass and product formation. PLoS One 2014;9:e113786 [CrossRef][PubMed]
    [Google Scholar]
  72. Kannisto MS, Mangayil RK, Shrivastava-Bhattacharya A, Pletschke BI, Karp MT et al. Metabolic engineering of Acinetobacter baylyi ADP1 for removal of Clostridium butyricum growth inhibitors produced from lignocellulosic hydrolysates. Biotechnol Biofuels 2015;8:198 [CrossRef][PubMed]
    [Google Scholar]
  73. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth Informational Supplement. CLSI document M100-S25. 2015
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000488
Loading
/content/journal/micro/10.1099/mic.0.000488
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error