1887

Abstract

The Rcs phosphorelay signal transduction system of Escherichia coli controls genes for capsule production and many other envelope-related functions and is implicated in biofilm formation. The outer-membrane lipoprotein RcsF is an essential component of the Rcs system. Mislocalization of RcsF to the periplasm or the cytoplasmic membrane leads to high activation of the Rcs system, suggesting that RcsF functions by interacting with the cytoplasmic membrane component(s) of the system in activating the system. This is consistent with the result reported by Cho et al. (Cell 159, 1652–1664, 2014) showing that RcsF interacts with the periplasmic domain (YrfFperi) of the inner-membrane protein YrfF (IgaA in Salmonella enterica serovar Typhimurium), which is a negative regulator of the Rcs system. In this study we show that RcsF also interacts with the periplasmic domain of the innermembrane-localized histidine kinase RcsC (RcsCperi). RcsCperi, which was secreted to the periplasm by fusion to maltose-binding protein, titrated RcsF’s activating effect. A bimolecular fluorescence complementation experiment showed interaction of RcsF with RcsCperi, as well as with YrfFperi. We conclude that RcsF interacts with the periplasmically exposed region of RcsC, as well as with that of YrfF.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000483
2017-07-08
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/7/1071.html?itemId=/content/journal/micro/10.1099/mic.0.000483&mimeType=html&fmt=ahah

References

  1. Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005;59:379–405 [CrossRef][PubMed]
    [Google Scholar]
  2. Gervais FG, Drapeau GR. Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12. J Bacteriol 1992;174:8016–8022 [CrossRef][PubMed]
    [Google Scholar]
  3. Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J et al. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol 2004;186:6526–6535 [CrossRef][PubMed]
    [Google Scholar]
  4. Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins. Proc Natl Acad Sci USA 2014;111:E4350E4358 [CrossRef][PubMed]
    [Google Scholar]
  5. Cano DA, Martínez-Moya M, Pucciarelli MG, Groisman EA, Casadesús J et al. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 2001;69:6463–6474 [CrossRef][PubMed]
    [Google Scholar]
  6. Cano DA, Domínguez-Bernal G, Tierrez A, Garcia-del Portillo F, Casadesús J. Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 2002;162:1513–1523[PubMed]
    [Google Scholar]
  7. Shiba Y, Miyagawa H, Nagahama H, Matsumoto K, Kondo D et al. Exploring the relationship between lipoprotein mislocalization and activation of the Rcs signal transduction system in Escherichia coli. Microbiology 2012;158:1238–1248 [CrossRef][PubMed]
    [Google Scholar]
  8. Cho SH, Szewczyk J, Pesavento C, Zietek M, Banzhaf M et al. Detecting envelope stress by monitoring β-barrel assembly. Cell 2014;159:1652–1664 [CrossRef][PubMed]
    [Google Scholar]
  9. Miller JH. A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1992
    [Google Scholar]
  10. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  11. Brill JA, Quinlan-Walshe C, Gottesman S. Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 1988;170:2599–2611 [CrossRef][PubMed]
    [Google Scholar]
  12. Wang PZ, Doi RH. Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. J Biol Chem 1984;259:8619–8625[PubMed]
    [Google Scholar]
  13. Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 2006;24:79–88 [CrossRef][PubMed]
    [Google Scholar]
  14. Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 2006;40:61–66 [CrossRef][PubMed]
    [Google Scholar]
  15. Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K. Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 2005;187:2163–2174 [CrossRef][PubMed]
    [Google Scholar]
  16. Stout V, Gottesman S. RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 1990;172:659–669 [CrossRef][PubMed]
    [Google Scholar]
  17. Ebel W, Vaughn GJ, Peters HK, Trempy JE 3rd. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 1997;179:6858–6861 [CrossRef][PubMed]
    [Google Scholar]
  18. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995;177:4121–4130 [CrossRef][PubMed]
    [Google Scholar]
  19. Siegele DA, Hu JC. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci USA 1997;94:8168–8172 [CrossRef][PubMed]
    [Google Scholar]
  20. Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD. Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 2001;147:3241–3247 [CrossRef][PubMed]
    [Google Scholar]
  21. Umekawa M, Miyagawa H, Kondo D, Matsuoka S, Matsumoto K et al. Importance of the proline-rich region for the regulatory function of RcsF, an outer membrane lipoprotein component of the Escherichia coli Rcs signal transduction system. Microbiology 2013;159:1818–1827 [CrossRef][PubMed]
    [Google Scholar]
  22. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 2002;9:789–798[PubMed][CrossRef]
    [Google Scholar]
  23. Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A et al. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 2011;286:16734–16742 [CrossRef][PubMed]
    [Google Scholar]
  24. Rogov VV, Rogova NY, Bernhard F, Löhr F, Dötsch V. A disulfide bridge network within the soluble periplasmic domain determines structure and function of the outer membrane protein RcsF. J Biol Chem 2011;286:18775–18783. [CrossRef][PubMed]
    [Google Scholar]
  25. Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 2000;182:4068–4076 [CrossRef][PubMed]
    [Google Scholar]
  26. Aronson DE, Costantini LM, Snapp EL. Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic 2011;12:543–548 [CrossRef][PubMed]
    [Google Scholar]
  27. Dinh T, Bernhardt TG. Using superfolder green fluorescent protein for periplasmic protein localization studies. J Bacteriol 2011;193:4984–4987 [CrossRef][PubMed]
    [Google Scholar]
  28. Blondel A, Bedouelle H. Engineering the quaternary structure of an exported protein with a leucine zipper. Protein Eng 1991;4:457–461 [CrossRef][PubMed]
    [Google Scholar]
  29. Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 1998;95:5752–5756 [CrossRef][PubMed]
    [Google Scholar]
  30. Clarke DJ, Holland IB, Jacq A. Point mutations in the transmembrane domain of DjlA, a membrane-linked DnaJ-like protein, abolish its function in promoting colanic acid production via the Rcs signal transduction pathway. Mol Microbiol 1997;25:933–944 [CrossRef][PubMed]
    [Google Scholar]
  31. Kelley WL, Georgopoulos C. Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli. Mol Microbiol 1997;25:913–931 [CrossRef][PubMed]
    [Google Scholar]
  32. Clarke DJ, Joyce SA, Toutain CM, Jacq A, Holland IB. Genetic analysis of the RcsC sensor kinase from Escherichia coli K-12. J Bacteriol 2002;184:1204–1208 [CrossRef][PubMed]
    [Google Scholar]
  33. Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 2001;40:440–450 [CrossRef][PubMed]
    [Google Scholar]
  34. Farris C, Sanowar S, Bader MW, Pfuetzner R, Miller SI. Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. J Bacteriol 2010;192:4894–4903 [CrossRef][PubMed]
    [Google Scholar]
  35. Pescaretti ML, Farizano JV, Morero R, Delgado MA. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar Typhimurium. PLoS One 2013;8:e72527 [CrossRef][PubMed]
    [Google Scholar]
  36. Shiba Y, Matsumoto K, Hara H. DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genet Syst 2006;81:51–56 [CrossRef][PubMed]
    [Google Scholar]
  37. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  38. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio Collection. Mol Syst Biol 2006;2: [CrossRef][PubMed]
    [Google Scholar]
  39. Kikuchi S, Shibuya I, Matsumoto K. Viability of an Escherichia coli pgsA null mutant lacking detectable phosphatidylglycerol and cardiolipin. J Bacteriol 2000;182:371–376 [CrossRef][PubMed]
    [Google Scholar]
  40. Nagahama H, Sakamoto Y, Matsumoto K, Hara H. RcsA-dependent and -independent growth defects caused by the activated Rcs phosphorelay system in the Escherichia coli pgsA null mutant. J Gen Appl Microbiol 2006;52:91–98 [CrossRef][PubMed]
    [Google Scholar]
  41. Churchward G, Belin D, Nagamine Y. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 1984;31:165–171 [CrossRef][PubMed]
    [Google Scholar]
  42. Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995;158:9–14 [CrossRef][PubMed]
    [Google Scholar]
  43. Amann E, Ochs B, Abel KJ. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 1988;69:301–315 [CrossRef][PubMed]
    [Google Scholar]
  44. Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 1978;134:1141–1156[PubMed]
    [Google Scholar]
  45. Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L. Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci USA 2001;98:15264–15269 [CrossRef][PubMed]
    [Google Scholar]
  46. Englesberg E, Anderson RL, Weinberg R, Lee N, Hoffee P et al. l-Arabinose-sensitive, l-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. J Bacteriol 1962;84:137–146[PubMed]
    [Google Scholar]
  47. Cox MM. The FLP protein of the yeast 2-microns plasmid: expression of a eukaryotic genetic recombination system in Escherichia coli. Proc Natl Acad Sci USA 1983;80:4223–4227 [CrossRef][PubMed]
    [Google Scholar]
  48. Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 1999;181:508–520[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000483
Loading
/content/journal/micro/10.1099/mic.0.000483
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error