1887

Abstract

lipopolysaccharides (LPS) serve as primary receptors for many bacteriophages and, consequently, their biosynthesis is frequently affected in phage-resistant mutants. We previously isolated phage-resistant PAO1 mutants using three different phages, and showed that they were affected in the synthesis of LPS. Here we have investigated in detail the effect of mutations in seven genes involved in different steps of the production of core and oligosaccharide chains. The band profile of purified LPS was analysed by PAGE, and we further characterized the O-chains and core structures by MALDI mass spectrometry (MS). Mild LPS extraction conditions and native LPS MS analyses helped unveil lipid A molecular species with three phosphate residues in the close vicinity of the already highly charged inner-core region. No other MS direct analysis has allowed this peculiarity to be demonstrated for native lipid A high-molecular-weight molecular species, in normal growth conditions and without involving separation techniques. The present results shed light on the possible interactions between the phages and the LPS structures in the early phase of infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000476
2017-06-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/6/848.html?itemId=/content/journal/micro/10.1099/mic.0.000476&mimeType=html&fmt=ahah

References

  1. King JD, Kocíncová D, Westman EL, Lam JS. Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009;15:261–312 [CrossRef][PubMed]
    [Google Scholar]
  2. Murphy K, Park AJ, Hao Y, Brewer D, Lam JS et al. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol 2014;196:1306–1317 [CrossRef][PubMed]
    [Google Scholar]
  3. Cryz SJ, Pitt TL, Fürer E, Germanier R. Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa. Infect Immun 1984;44:508–513[PubMed]
    [Google Scholar]
  4. Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 1999;63:523–553[PubMed]
    [Google Scholar]
  5. Rocchetta HL, Burrows LL, Pacan JC, Lam JS. Three rhamnosyltransferases responsible for assembly of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis. Mol Microbiol 1998;28:1103–1119 [CrossRef][PubMed]
    [Google Scholar]
  6. Hao Y, Murphy K, Lo RY, Khursigara CM, Lam JS. Single-nucleotide polymorphisms found in the migA and wbpX glycosyltransferase genes account for the intrinsic lipopolysaccharide defects exhibited by Pseudomonas aeruginosa PA14. J Bacteriol 2015;197:2780–2791 [CrossRef][PubMed]
    [Google Scholar]
  7. Knirel YA, Bystrova OV, Shashkov AS, Lindner B, Kocharova NA et al. Structural analysis of the lipopolysaccharide core of a rough, cystic fibrosis isolate of Pseudomonas aeruginosa. Eur J Biochem 2001;268:4708–4719 [CrossRef][PubMed]
    [Google Scholar]
  8. Koval SF, Meadow PM. The isolation and characterization of lipopolysaccharide-defective mutants of Pseudomonas aeruginosa PAC1. J Gen Microbiol 1977;98:387–398 [CrossRef][PubMed]
    [Google Scholar]
  9. Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol 2011;2:118 [CrossRef][PubMed]
    [Google Scholar]
  10. Islam ST, Lam JS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 2014;60:697–716 [CrossRef][PubMed]
    [Google Scholar]
  11. Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 2012;356:12–24 [CrossRef][PubMed]
    [Google Scholar]
  12. Hao Y, King JD, Huszczynski S, Kocíncová D, Lam JS. Five new genes are important for common polysaccharide antigen biosynthesis in Pseudomonas aeruginosa. MBio 2013;4:e00631-12 [CrossRef][PubMed]
    [Google Scholar]
  13. Delucia AM, Six DA, Caughlan RE, Gee P, Hunt I et al. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1. MBio 2011;2:e00142-11 [CrossRef][PubMed]
    [Google Scholar]
  14. Walsh AG, Matewish MJ, Burrows LL, Monteiro MA, Perry MB et al. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol Microbiol 2000;35:718–727 [CrossRef][PubMed]
    [Google Scholar]
  15. Köhler T, Donner V, van Delden C. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J Bacteriol 2010;192:1921–1928 [CrossRef][PubMed]
    [Google Scholar]
  16. Jarrell K, Kropinski AM. Identification of the cell wall receptor for bacteriophage E79 in Pseudomonas aeruginosa strain PAO. J Virol 1977;23:461–466[PubMed]
    [Google Scholar]
  17. Salkinoja-Salonen M, Nurmiaho EL. The effect of lipopolysaccharide composition on the ultrastructure of Pseudomonas aeruginosa. J Gen Microbiol 1978;105:23–28 [CrossRef][PubMed]
    [Google Scholar]
  18. Jarrell KF, Kropinski AM. Pseudomonas aeruginosa bacteriophage phi PLS27-lipopolysaccharide interactions. J Virol 1981;40:411–420[PubMed]
    [Google Scholar]
  19. Latino L, Midoux C, Hauck Y, Vergnaud G, Pourcel C. Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa. Microbiology 2016;162:748–763 [CrossRef][PubMed]
    [Google Scholar]
  20. Caroff M. Novel method for isolating endotoxins. Patent WO2004/062690 A1 2004
  21. Albitar-Nehme S, Basheer SM, Njamkepo E, Brisson JR, Guiso N et al. Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era. Carbohydr Res 2013;378:56–62 [CrossRef][PubMed]
    [Google Scholar]
  22. Hitchcock PJ, Brown TM. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 1983;154:269–277[PubMed]
    [Google Scholar]
  23. Tsai CM. The analysis of lipopolysaccharide (endotoxin) in meningococcal polysaccharide vaccines by silver staining following SDS-polyacrylamide gel electrophoresis. J Biol Stand 1986;14:25–33 [CrossRef][PubMed]
    [Google Scholar]
  24. Therisod H, Labas V, Caroff M. Direct microextraction and analysis of rough-type lipopolysaccharides by combined thin-layer chromatography and MALDI mass spectrometry. Anal Chem 2001;73:3804–3807 [CrossRef][PubMed]
    [Google Scholar]
  25. Essoh C, Latino L, Midoux C, Blouin Y, Loukou G et al. Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d'Ivoire. PLoS One 2015;10:e0130548 [CrossRef][PubMed]
    [Google Scholar]
  26. Daniels C, Griffiths C, Cowles B, Lam JS. Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ Microbiol 2002;4:883–897 [CrossRef][PubMed]
    [Google Scholar]
  27. Arsenault TL, Hughes DW, Maclean DB, Szarek WA, Kropinski AMB et al. Structural studies on the polysaccharide portion of "A-band" lipopolysaccharide from a mutant (AK1401) of Pseudomonas aeruginosa strain PAO1. Can J Chem 1991;69:1273–1280 [CrossRef]
    [Google Scholar]
  28. Sadovskaya I, Brisson JR, Lam JS, Richards JC, Altman E. Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype O5. Eur J Biochem 1998;255:673–684 [CrossRef][PubMed]
    [Google Scholar]
  29. Geurtsen J, Steeghs L, Hove JT, van der Ley P, Tommassen J. Dissemination of lipid A deacylases (pagL) among gram-negative bacteria: identification of active-site histidine and serine residues. J Biol Chem 2005;280:8248–8259 [CrossRef][PubMed]
    [Google Scholar]
  30. Jones JW, Shaffer SA, Ernst RK, Goodlett DR, Turecek F. Determination of pyrophosphorylated forms of lipid A in Gram-negative bacteria using a multivaried mass spectrometric approach. Proc Natl Acad Sci USA 2008;105:12742–12747 [CrossRef][PubMed]
    [Google Scholar]
  31. Nowicki EM, O'Brien JP, Brodbelt JS, Trent MS. Characterization of Pseudomonas aeruginosa LpxT reveals dual positional lipid A kinase activity and co-ordinated control of outer membrane modification. Mol Microbiol 2014;94:728–741 [CrossRef][PubMed]
    [Google Scholar]
  32. Islam ST, Huszczynski SM, Nugent T, Gold AC, Lam JS. Conserved-residue mutations in Wzy affect O-antigen polymerization and Wzz-mediated chain-length regulation in Pseudomonas aeruginosa PAO1. Sci Rep 2013;3:3441 [CrossRef][PubMed]
    [Google Scholar]
  33. Liebens V, Defraine V, van der Leyden A, De Groote VN, Fierro C et al. A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis 2014;71:39–54 [CrossRef][PubMed]
    [Google Scholar]
  34. Hansen SK, Haagensen JA, Gjermansen M, Jørgensen TM, Tolker-Nielsen T et al. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J Bacteriol 2007;189:4932–4943 [CrossRef][PubMed]
    [Google Scholar]
  35. Yethon JA, Gunn JS, Ernst RK, Miller SI, Laroche L et al. Salmonella enterica serovar Typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence In vivo. Infect Immun 2000;68:4485–4491 [CrossRef][PubMed]
    [Google Scholar]
  36. Matewisch M. The functional role of lipopolysaccharide in the cell enveloppe and surface proteins of Pseudomonas aeruginosa. PhD thesis University of Guelph, Guelph, ON, Canada; 2004
    [Google Scholar]
  37. Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 2008;67:264–277 [CrossRef][PubMed]
    [Google Scholar]
  38. Lam JS, Graham LL, Lightfoot J, Dasgupta T, Beveridge TJ. Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze-substitution. J Bacteriol 1992;174:7159–7167 [CrossRef][PubMed]
    [Google Scholar]
  39. Kutter EM, Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in western medicine. Future Microbiol 2015;10:685–688 [CrossRef][PubMed]
    [Google Scholar]
  40. Poon KK, Westman EL, Vinogradov E, Jin S, Lam JS. Functional characterization of MigA and WapR: putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. J Bacteriol 2008;190:1857–1865 [CrossRef][PubMed]
    [Google Scholar]
  41. Kocíncová D, Ostler SL, Anderson EM, Lam JS. Rhamnosyltransferase genes migA and wapR are regulated in a differential manner to modulate the quantities of core oligosaccharide glycoforms produced by Pseudomonas aeruginosa. J Bacteriol 2012;194:4295–4300 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000476
Loading
/content/journal/micro/10.1099/mic.0.000476
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error