1887

Abstract

Bacteria of the genus Xanthomonas are a major group of plant pathogens. They are hazardous to important crops and closely related to human pathogens. Being collectively a major focus of molecular phytopathology, an increasing number of diverse and intricate mechanisms are emerging by which they communicate, interfere with host signalling and keep competition at bay. Interestingly, they are also biotechnologically relevant polysaccharide producers. Systems biotechnology techniques have revealed their central metabolism and a growing number of remarkable features. Traditional analyses of Xanthomonas metabolism missed the Embden–Meyerhof–Parnas pathway (glycolysis) as being a route by which energy and molecular building blocks are derived from glucose. As a consequence of the emerging full picture of their metabolism process, xanthomonads were discovered to have three alternative catabolic pathways and they use an unusual and reversible phosphofructokinase as a key enzyme. In this review, we summarize the synthetic and systems biology methods and the bioinformatics tools applied to reconstruct their metabolic network and reveal the dynamic fluxes within their complex carbohydrate metabolism. This is based on insights from omics disciplines; in particular, genomics, transcriptomics, proteomics and metabolomics. Analysis of high-throughput omics data facilitates the reconstruction of organism-specific large- and genome-scale metabolic networks. Reconstructed metabolic networks are fundamental to the formulation of metabolic models that facilitate the simulation of actual metabolic activities under specific environmental conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000473
2017-08-10
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/8/1117.html?itemId=/content/journal/micro/10.1099/mic.0.000473&mimeType=html&fmt=ahah

References

  1. Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R. Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 2014;15:289–294 [CrossRef][PubMed]
    [Google Scholar]
  2. Kitano H. Computational systems biology. Nature 2002;420:206–210 [CrossRef][PubMed]
    [Google Scholar]
  3. Smolke CD, Silver PA. Informing biological design by integration of systems and synthetic biology. Cell 2011;144:855–859 [CrossRef][PubMed]
    [Google Scholar]
  4. Ge H, Walhout AJ, Vidal M. Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet 2003;19:551–560 [CrossRef][PubMed]
    [Google Scholar]
  5. Palsson B. In silico biology through "omics". Nat Biotechnol 2002;20:649–650 [CrossRef][PubMed]
    [Google Scholar]
  6. Gross RW, Holčapek M. Lipidomics. Anal Chem 2014;86:8505 [CrossRef][PubMed]
    [Google Scholar]
  7. Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 2010;11:593–598 [CrossRef][PubMed]
    [Google Scholar]
  8. Wenk MR. Lipidomics: new tools and applications. Cell 2010;143:888–895 [CrossRef][PubMed]
    [Google Scholar]
  9. Krishnamoorthy L, Mahal LK. Glycomic analysis: an array of technologies. ACS Chem Biol 2009;4:715–732 [CrossRef][PubMed]
    [Google Scholar]
  10. Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H et al. Quantitative glycomics strategies. Mol Cell Proteomics 2013;12:874–884 [CrossRef][PubMed]
    [Google Scholar]
  11. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2005;2:817–824 [CrossRef][PubMed]
    [Google Scholar]
  12. Heux S, Bergès C, Millard P, Portais JC, Létisse F. Recent advances in high-throughput 13C-fluxomics. Curr Opin Biotechnol 2017;43:104–109 [CrossRef][PubMed]
    [Google Scholar]
  13. Niedenführ S, Wiechert W, Nöh K. How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Curr Opin Biotechnol 2015;34:82–90 [CrossRef][PubMed]
    [Google Scholar]
  14. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001;292:929–934 [CrossRef][PubMed]
    [Google Scholar]
  15. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 2007;316:593–597 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhang W, Li F, Nie L. Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology 2010;156:287–301 [CrossRef][PubMed]
    [Google Scholar]
  17. Carinhas N, Oliveira R, Alves PM, Carrondo MJT, Teixeira AP. Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol 2012;30:377–385 [CrossRef][PubMed]
    [Google Scholar]
  18. Sagt CMJ. Systems metabolic engineering in an industrial setting. Appl Microbiol Biotechnol 2013;97:2319–2326 [CrossRef][PubMed]
    [Google Scholar]
  19. Tang WL, Zhao H. Industrial biotechnology: tools and applications. Biotechnol J 2009;4:1725–1739 [CrossRef][PubMed]
    [Google Scholar]
  20. Weckwerth W. Metabolomics: an integral technique in systems biology. Bioanalysis 2010;2:829–836 [CrossRef][PubMed]
    [Google Scholar]
  21. Wiechert W, Noack S. Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile. Curr Opin Biotechnol 2011;22:604–610 [CrossRef][PubMed]
    [Google Scholar]
  22. Otero JM, Nielsen J. Industrial systems biology. Biotechnol Bioeng 2010;105:439–460 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee SY, Mattanovich D, Villaverde A. Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Factories 2012;11:156[CrossRef]
    [Google Scholar]
  24. Jang YS, Park JM, Choi S, Choi YJ, Seung do Y et al. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2012;30:989–1000 [CrossRef][PubMed]
    [Google Scholar]
  25. Antoniewicz MR, Kraynie DF, Laffend LA, González-Lergier J, Kelleher JK et al. Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 2007;9:277–292 [CrossRef][PubMed]
    [Google Scholar]
  26. Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 2003;14:454–459 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim TY, Kim HU, Park JM, Song H, Kim JS et al. Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol Bioeng 2007;97:657–671 [CrossRef][PubMed]
    [Google Scholar]
  28. Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 2006;72:1939–1948 [CrossRef][PubMed]
    [Google Scholar]
  29. Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L et al. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 2013;8:e54144 [CrossRef][PubMed]
    [Google Scholar]
  30. Werpy T, Petersen G, Aden A, Bozell J, Holladay J et al. Top Value Added Chemicals from Biomass: Results of Screening for Potential Candidates from Sugars and Synthesis Gasvol. 1 2004;[CrossRef]
    [Google Scholar]
  31. Aderem A, Adkins JN, Ansong C, Galagan J, Kaiser S et al. A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. MBio 2011;2:e00325-10 [CrossRef][PubMed]
    [Google Scholar]
  32. Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 2010;8:401–412 [CrossRef][PubMed]
    [Google Scholar]
  33. Musser JM, Deleo FR. Toward a genome-wide systems biology analysis of host-pathogen interactions in group A streptococcus. Am J Pathol 2005;167:1461–1472 [CrossRef][PubMed]
    [Google Scholar]
  34. Durmuş S, Çakır T, Özgür A, Guthke R. A review on computational systems biology of pathogen-host interactions. Front Microbiol 2015;6:235 [CrossRef][PubMed]
    [Google Scholar]
  35. Mukherjee S, Sambarey A, Prashanthi K, Chandra N. Current trends in modeling host-pathogen interactions. Wiley Interdiscip Rev Data Min Knowl Discov 2013;3:109–128 [CrossRef]
    [Google Scholar]
  36. Ohl ME, Miller SI. Salmonella: a model for bacterial pathogenesis. Annu Rev Med 2001;52:259–274 [CrossRef][PubMed]
    [Google Scholar]
  37. Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK et al. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol 2011;5:8 [CrossRef][PubMed]
    [Google Scholar]
  38. Ansong C, Deatherage BL, Hyduke D, Schmidt B, McDermott JE et al. Studying salmonellae and yersiniae host–pathogen interactions using integrated 'omics and modeling. Curr Top Microbiol Immunol 2013;363:21–41 [CrossRef][PubMed]
    [Google Scholar]
  39. Wolstencroft K, Owen S, Krebs O, Nguyen Q, Stanford NJ et al. SEEK: a systems biology data and model management platform. BMC Syst Biol 2015;9:33 [CrossRef][PubMed]
    [Google Scholar]
  40. Büttner D. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012;76:262–310 [CrossRef][PubMed]
    [Google Scholar]
  41. Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T et al. Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 2011;6:e24112 [CrossRef][PubMed]
    [Google Scholar]
  42. Letisse F, Lindley ND, Roux G. Development of a phenomenological modeling approach for prediction of growth and xanthan gum production using Xanthomonas campestris. Biotechnol Prog 2003;19:822–827 [CrossRef][PubMed]
    [Google Scholar]
  43. Schatschneider S, Persicke M, Watt SA, Hublik G, Pühler A et al. Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 2013;167:123–134 [CrossRef][PubMed]
    [Google Scholar]
  44. Shaw JJ, Kado CI. Whole plant wound inoculation for consistent reproduction of black rot of crucifers. Phytopathology 1988;78:981–986 [CrossRef]
    [Google Scholar]
  45. Vicente JG, Holub EB. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 2013;14:2–18 [CrossRef][PubMed]
    [Google Scholar]
  46. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13:614–629 [CrossRef][PubMed]
    [Google Scholar]
  47. Hirano SS, Upper CD. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 2000;64:624–653 [CrossRef][PubMed]
    [Google Scholar]
  48. Katagiri F, Thilmony R, He SY. The Arabidopsis thaliana–Pseudomonas syringae interaction. Arabidopsis Book 2002;1:e0039 [CrossRef][PubMed]
    [Google Scholar]
  49. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 2008;9:R74 [CrossRef][PubMed]
    [Google Scholar]
  50. Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 2015;6:658 [CrossRef][PubMed]
    [Google Scholar]
  51. Hublik G. 10.11 Xanthan. In Matyjaszewski K, Möller M. (editors) Polymer Science: a Comprehensive Reference Amsterdam: Elsevier; 2012; pp.221–229[CrossRef]
    [Google Scholar]
  52. Jansson PE, Kenne L, Lindberg B. Structure of extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 1975;45:275–282 [CrossRef][PubMed]
    [Google Scholar]
  53. Stankowski JD, Mueller BE, Zeller SG. Location of a second O-acetyl group in xanthan gum by the reductive-cleavage method. Carbohydr Res 1993;241:321–326 [CrossRef][PubMed]
    [Google Scholar]
  54. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A et al. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 1998;180:1607–1617[PubMed]
    [Google Scholar]
  55. Poplawsky AR, Urban SC, Chun W. Biological role of xanthomonadin pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol 2000;66:5123–5127 [CrossRef][PubMed]
    [Google Scholar]
  56. Poli A, Anzelmo G, Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 2010;8:1779–1802 [CrossRef][PubMed]
    [Google Scholar]
  57. Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001;147:3–9 [CrossRef][PubMed]
    [Google Scholar]
  58. Bianco MI, Toum L, Yaryura PM, Mielnichuk N, Gudesblat GE et al. Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 2016;29:688–699 [CrossRef][PubMed]
    [Google Scholar]
  59. Dunger G, Relling VM, Tondo ML, Barreras M, Ielpi L et al. Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Arch Microbiol 2007;188:127–135 [CrossRef][PubMed]
    [Google Scholar]
  60. Yun MH, Torres PS, El Oirdi M, Rigano LA, Gonzalez-Lamothe R et al. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 2006;141:178–187 [CrossRef][PubMed]
    [Google Scholar]
  61. Aslam SN, Newman MA, Erbs G, Morrissey KL, Chinchilla D et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 2008;18:1078–1083 [CrossRef][PubMed]
    [Google Scholar]
  62. Born K, Langendorff V, Boulenguer P. Xanthan. In: Biopolymers Online Wiley-VCH Verlag GmbH & Co. KGaA; 2005; pp.261–281
    [Google Scholar]
  63. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 1990;7:113–130 [CrossRef][PubMed]
    [Google Scholar]
  64. Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 2013;82:237–266 [CrossRef][PubMed]
    [Google Scholar]
  65. Pieretti I, Pesic A, Petras D, Royer M, Süssmuth RD et al. What makes Xanthomonas albilineans unique amongst xanthomonads?. Front Plant Sci 2015;6:289 [CrossRef][PubMed]
    [Google Scholar]
  66. Ryan RP, Vorhölter FJ, Potnis N, Jones JB, van Sluys MA et al. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 2011;9:344–355 [CrossRef][PubMed]
    [Google Scholar]
  67. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 2008;9:204 [CrossRef][PubMed]
    [Google Scholar]
  68. Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 2009;296:110–116 [CrossRef][PubMed]
    [Google Scholar]
  69. Monteiro-Vitorello CB, de Oliveira MC, Zerillo MM, Varani AM, Civerolo E et al. Xylella and Xanthomonas Mobil'omics. OMICS 2005;9:146–159 [CrossRef][PubMed]
    [Google Scholar]
  70. Varani AM, Monteiro-Vitorello CB, Nakaya HI, van Sluys MA. The role of prophage in plant-pathogenic bacteria. Annu Rev Phytopathol 2013;51:429–451 [CrossRef][PubMed]
    [Google Scholar]
  71. Letisse F, Chevallereau P, Simon JL, Lindley N. The influence of metabolic network structures and energy requirements on xanthan gum yields. J Biotechnol 2002;99:307–317 [CrossRef][PubMed]
    [Google Scholar]
  72. Garcia-Ochoa F, Santos VE, Alcon A. Chemical structured kinetic model for xanthan production. Enzyme Microb Technol 2004;35:284–292 [CrossRef]
    [Google Scholar]
  73. Wibberg D, Alkhateeb RS, Winkler A, Albersmeier A, Schatschneider S et al. Draft genome of the xanthan producer Xanthomonas campestris NRRL B-1459 (ATCC 13951). J Biotechnol 2015;204:45–46 [CrossRef][PubMed]
    [Google Scholar]
  74. Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 2008;134:33–45 [CrossRef][PubMed]
    [Google Scholar]
  75. Vorhölter FJ, Thias T, Meyer F, Bekel T, Kaiser O et al. Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition. J Biotechnol 2003;106:193–202 [CrossRef][PubMed]
    [Google Scholar]
  76. Bartels D, Kespohl S, Albaum S, Drüke T, Goesmann A et al. BACCardI—a tool for the validation of genomic assemblies, assisting genome finishing and intergenome comparison. Bioinformatics 2005;21:853–859 [CrossRef][PubMed]
    [Google Scholar]
  77. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T et al. GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003;31:2187–2195 [CrossRef][PubMed]
    [Google Scholar]
  78. Thieme F, Koebnik R, Bekel T, Berger C, Boch J et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 2005;187:7254–7266 [CrossRef][PubMed]
    [Google Scholar]
  79. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C et al. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2007;2:e224 [CrossRef][PubMed]
    [Google Scholar]
  80. de Crécy-Lagard V, Bouvet OM, Lejeune P, Danchin A. Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. J Biol Chem 1991;266:18154–18161[PubMed]
    [Google Scholar]
  81. de Crécy-Lagard V, Binet M, Danchin A. Fructose phosphotransferase system of Xanthomonas campestris pv. campestris: characterization of the fruB gene. Microbiology 1995;141:2253–2260 [CrossRef][PubMed]
    [Google Scholar]
  82. Wiggerich HG, Pühler A. The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). Microbiology 2000;146:1053–1060 [CrossRef][PubMed]
    [Google Scholar]
  83. Tang DJ, He YQ, Feng JX, He BR, Jiang BL et al. Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. J Bacteriol 2005;187:6231–6237 [CrossRef][PubMed]
    [Google Scholar]
  84. Pielken P, Schimz KL, Eggeling L, Sahm H. Glucose metabolism in Xanthomonas campestris and influence of methionine on the carbon flow. Can J Microbiol 1988;34:1333–1337 [CrossRef][PubMed]
    [Google Scholar]
  85. Whitfield C, Sutherland IW, Cripps RE. Glucose metabolism in Xanthomonas campestris. Microbiology 1982;128:981–985 [CrossRef]
    [Google Scholar]
  86. Harding NE, Raffo S, Raimondi A, Cleary JM, Ielpi L. Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. J Gen Microbiol 1993;139:447–457 [CrossRef][PubMed]
    [Google Scholar]
  87. Hötte B, Rath-Arnold I, Pühler A, Simon R. Cloning and analysis of a 35.3-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris. J Bacteriol 1990;172:2804–2807 [CrossRef][PubMed]
    [Google Scholar]
  88. Köplin R, Arnold W, Hötte B, Simon R, Wang G et al. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol 1992;174:191–199 [CrossRef][PubMed]
    [Google Scholar]
  89. Köplin R, Wang G, Hötte B, Priefer UB, Pühler A. A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol 1993;175:7786–7792 [CrossRef][PubMed]
    [Google Scholar]
  90. Steinmann D, Köplin R, Pühler A, Niehaus K. Xanthomonas campestris pv. campestris lpsI and lpsJ genes encoding putative proteins with sequence similarity to the α- and β-subunits of 3-oxoacid CoA-transferases are involved in LPS biosynthesis. Arch Microbiol 1997;168:441–447 [CrossRef][PubMed]
    [Google Scholar]
  91. Vorhölter FJ, Niehaus K, Pühler A. Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Genet Genomics 2001;266:79–95[PubMed][CrossRef]
    [Google Scholar]
  92. Becker A, Katzen F, Pühler A, Ielpi L. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 1998;50:145–152 [CrossRef][PubMed]
    [Google Scholar]
  93. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A et al. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 1998;180:1607–1617[PubMed]
    [Google Scholar]
  94. Vojnov AA, Slater H, Daniels MJ, Dow JM. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant Microbe Interact 2001;14:768–774 [CrossRef][PubMed]
    [Google Scholar]
  95. Qian W, Jia Y, Ren SX, He YQ, Feng JX et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 2005;15:757–767 [CrossRef][PubMed]
    [Google Scholar]
  96. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002;417:459–463 [CrossRef][PubMed]
    [Google Scholar]
  97. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV et al. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 2011;193:5450–5464 [CrossRef][PubMed]
    [Google Scholar]
  98. Tao F, Wang X, Ma C, Yang C, Tang H et al. Genome sequence of Xanthomonas campestris JX, an industrially productive strain for xanthan gum. J Bacteriol 2012;194:4755–4756 [CrossRef][PubMed]
    [Google Scholar]
  99. Bolot S, Guy E, Carrere S, Barbe V, Arlat M et al. Genome sequence of Xanthomonas campestris pv. campestris strain Xca5. Genome Announc 2013;1:e00032-12 [CrossRef][PubMed]
    [Google Scholar]
  100. Bolot S, Roux B, Carrere S, Jiang BL, Tang JL et al. Genome sequences of three atypical Xanthomonas campestris pv. campestris strains, CN14, CN15, and CN16. Genome Announc 2013;1:e00465-13 [CrossRef][PubMed]
    [Google Scholar]
  101. Schmid J, Huptas C, Wenning M. Draft genome sequence of the xanthan producer Xanthomonas campestris LMG 8031. Genome Announc 2016;4:e01069-16 [CrossRef][PubMed]
    [Google Scholar]
  102. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009;10:154 [CrossRef][PubMed]
    [Google Scholar]
  103. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016;44:W22–W28 [CrossRef][PubMed]
    [Google Scholar]
  104. Guy E, Genissel A, Hajri A, Chabannes M, David P et al. Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on Arabidopsis revealed by association and reverse genetics. MBio 2013;4:e00538-12 [CrossRef][PubMed]
    [Google Scholar]
  105. Mutz KO, Heilkenbrinker A, Lönne M, Walter JG, Stahl F. Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 2013;24:22–30 [CrossRef][PubMed]
    [Google Scholar]
  106. Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 2010;11:9–16 [CrossRef][PubMed]
    [Google Scholar]
  107. Schatschneider S, Vorhölter FJ, Rückert C, Becker A, Eisenreich W et al. Genome-enabled determination of amino acid biosynthesis in Xanthomonas campestris pv. campestris and identification of biosynthetic pathways for alanine, glycine, and isoleucine by 13C-isotopologue profiling. Mol Genet Genomics 2011;286:247–259 [CrossRef][PubMed]
    [Google Scholar]
  108. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  109. Borodovsky M, Lomsadze A. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr Protoc Microbiol 2014;32:Unit 1E.7 [CrossRef][PubMed]
    [Google Scholar]
  110. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  111. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999;27:4636–4641 [CrossRef][PubMed]
    [Google Scholar]
  112. Badger JH, Olsen GJ. CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol 1999;16:512–524 [CrossRef][PubMed]
    [Google Scholar]
  113. Linke B, McHardy AC, Neuweger H, Krause L, Meyer F. REGANOR: a gene prediction server for prokaryotic genomes and a database of high quality gene predictions for prokaryotes. Appl Bioinformatics 2006;5:193–198[PubMed][CrossRef]
    [Google Scholar]
  114. Krause L, McHardy AC, Nattkemper TW, Pühler A, Stoye J et al. GISMO—gene identification using a support vector machine for ORF classification. Nucleic Acids Res 2007;35:540–549 [CrossRef][PubMed]
    [Google Scholar]
  115. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef][PubMed]
    [Google Scholar]
  116. Alkhateeb RS, Vorhölter FJ, Rückert C, Mentz A, Wibberg D et al. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. J Biotechnol 2016;225:18–28 [CrossRef][PubMed]
    [Google Scholar]
  117. Abendroth U, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic Xanthomonas spp. RNA Biol 2014;11:457–463 [CrossRef][PubMed]
    [Google Scholar]
  118. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 2015;43:D130–D137 [CrossRef]
    [Google Scholar]
  119. Linke B, Giegerich R, Goesmann A. Conveyor: a workflow engine for bioinformatic analyses. Bioinformatics 2011;27:903–911 [CrossRef][PubMed]
    [Google Scholar]
  120. Boulanger A, Déjean G, Lautier M, Glories M, Zischek C et al. Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol 2010;192:1487–1497 [CrossRef][PubMed]
    [Google Scholar]
  121. Déjean G, Blanvillain-Baufumé S, Boulanger A, Darrasse A, Dugé de Bernonville T et al. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol 2013;198:899–915 [CrossRef][PubMed]
    [Google Scholar]
  122. Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A et al. The N-glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015;290:6022–6036 [CrossRef][PubMed]
    [Google Scholar]
  123. Serrania J, Vorhölter FJ, Niehaus K, Pühler A, Becker A. Identification of Xanthomonas campestris pv. campestris galactose utilization genes from transcriptome data. J Biotechnol 2008;135:309–317 [CrossRef][PubMed]
    [Google Scholar]
  124. Vorhölter FJ, Wiggerich HG, Scheidle H, Sidhu VK, Mrozek K et al. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiol 2012;12:239 [CrossRef][PubMed]
    [Google Scholar]
  125. Morizono H, Cabrera-Luque J, Shi D, Gallegos R, Yamaguchi S et al. Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. J Bacteriol 2006;188:2974–2982 [CrossRef][PubMed]
    [Google Scholar]
  126. Moser R, Aktas M, Narberhaus F. Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway. Mol Microbiol 2014;91:736–750 [CrossRef][PubMed]
    [Google Scholar]
  127. Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Factories 2007;6:4 [CrossRef][PubMed]
    [Google Scholar]
  128. Schulze A, Downward J. Navigating gene expression using microarrays—a technology review. Nat Cell Biol 2001;3:E190E195 [CrossRef][PubMed]
    [Google Scholar]
  129. Dondrup M, Albaum SP, Griebel T, Henckel K, Jünemann S et al. EMMA 2 – a MAGE-compliant system for the collaborative analysis and integration of microarray data. BMC Bioinformatics 2009;10:50 [CrossRef][PubMed]
    [Google Scholar]
  130. Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L et al. EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol 2003;106:135–146 [CrossRef][PubMed]
    [Google Scholar]
  131. Bordes P, Lavatine L, Phok K, Barriot R, Boulanger A et al. Insights into the extracytoplasmic stress response of Xanthomonas campestris pv. campestris: role and regulation of σE-dependent activity. J Bacteriol 2011;193:246–264 [CrossRef][PubMed]
    [Google Scholar]
  132. Dugé de Bernonville T, Noël LD, Sancristobal M, Danoun S, Becker A et al. Transcriptional reprogramming and phenotypical changes associated with growth of Xanthomonas campestris pv. campestris in cabbage xylem sap. FEMS Microbiol Ecol 2014;89:527–541 [CrossRef][PubMed]
    [Google Scholar]
  133. Mayer L, Vendruscolo CT, Silva WP, Vorhölter FJ, Becker A et al. Insights into the genome of the xanthan-producing phytopathogen Xanthomonas arboricola pv. pruni 109 by comparative genomic hybridization. J Biotechnol 2011;155:40–49 [CrossRef][PubMed]
    [Google Scholar]
  134. Zhou L, Vorhölter FJ, He YQ, Jiang BL, Tang JL et al. Gene discovery by genome-wide CDS re-prediction and microarray-based transcriptional analysis in phytopathogen Xanthomonas campestris. BMC Genomics 2011;12:359 [CrossRef][PubMed]
    [Google Scholar]
  135. An SQ, Febrer M, McCarthy Y, Tang DJ, Clissold L et al. High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol Microbiol 2013;88:1058–1069 [CrossRef][PubMed]
    [Google Scholar]
  136. Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J et al. ReadXplorer—visualization and analysis of mapped sequences. Bioinformatics 2014;30:2247–2254 [CrossRef][PubMed]
    [Google Scholar]
  137. Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010;11:220 [CrossRef][PubMed]
    [Google Scholar]
  138. Rapaport F, Khanin R, Liang Y, Pirun M, Krek A et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 2013;14:R95 [CrossRef][PubMed]
    [Google Scholar]
  139. Liu W, Yu YH, Cao SY, Niu XN, Jiang W et al. Transcriptome profiling of Xanthomonas campestris pv. campestris grown in minimal medium MMX and rich medium NYG. Res Microbiol 2013;164:466–479 [CrossRef][PubMed]
    [Google Scholar]
  140. Daniels MJ, Barber CE, Turner PC, Cleary WG, Sawczyc MK. Isolation of mutants of Xanthomonas campestris pv. campestris showing altered pathogenicity. Microbiology 1984;130:2447–2455 [CrossRef]
    [Google Scholar]
  141. Ryan RP, Dow JM. Diffusible signals and interspecies communication in bacteria. Microbiology 2008;154:1845–1858 [CrossRef][PubMed]
    [Google Scholar]
  142. Wang LH, He Y, Gao Y, Wu JE, Dong YH et al. A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 2004;51:903–912 [CrossRef][PubMed]
    [Google Scholar]
  143. Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM. A two-component system involving an HD-GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 2000;38:986–1003 [CrossRef][PubMed]
    [Google Scholar]
  144. Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH et al. The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 2010;396:646–662 [CrossRef][PubMed]
    [Google Scholar]
  145. He YW, Ng AY, Xu M, Lin K, Wang LH et al. Xanthomonas campestris cell–cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 2007;64:281–292 [CrossRef][PubMed]
    [Google Scholar]
  146. Poplawsky AR, Chun W. Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact 1998;11:466–475 [CrossRef][PubMed]
    [Google Scholar]
  147. Zhou L, Wang JY, Wu J, Wang J, Poplawsky A et al. The diffusible factor synthase XanB2 is a bifunctional chorismatase that links the shikimate pathway to ubiquinone and xanthomonadins biosynthetic pathways. Mol Microbiol 2013;87:80–93 [CrossRef][PubMed]
    [Google Scholar]
  148. Vorhölter FJ. RNA-Seq facilitates a new perspective on signal transduction and gene regulation in important plant pathogens. Mol Microbiol 2013;88:1041–1046 [CrossRef][PubMed]
    [Google Scholar]
  149. Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S et al. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 2012;40:2020–2031 [CrossRef][PubMed]
    [Google Scholar]
  150. Chen XL, Tang DJ, Jiang RP, He YQ, Jiang BL et al. sRNA-Xcc1, an integron-encoded transposon- and plasmid-transferred trans-acting sRNA, is under the positive control of the key virulence regulators HrpG and HrpX of Xanthomonas campestris pathovar campestris. RNA Biol 2011;8:947–953 [CrossRef][PubMed]
    [Google Scholar]
  151. Jiang RP, Tang DJ, Chen XL, He YQ, Feng JX et al. Identification of four novel small non-coding RNAs from Xanthomonas campestris pathovar campestris. BMC Genomics 2010;11:316 [CrossRef][PubMed]
    [Google Scholar]
  152. Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S et al. ReadXplorer 2—detailed read mapping analysis and visualization from one single source. Bioinformatics 2016;32:3702–3708 [CrossRef][PubMed]
    [Google Scholar]
  153. Tannu NS, Hemby SE. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 2006;1:1732–1742 [CrossRef][PubMed]
    [Google Scholar]
  154. Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 2006;5:651–658 [CrossRef][PubMed]
    [Google Scholar]
  155. Hufnagel P, Rabus R. Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying 'Aromatoleum' sp. strain EbN1. J Mol Microbiol Biotechnol 2006;11:53–81 [CrossRef][PubMed]
    [Google Scholar]
  156. Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 1993;3:327–332 [CrossRef][PubMed]
    [Google Scholar]
  157. Watt SA, Patschkowski T, Kalinowski J, Niehaus K. Qualitative and quantitative proteomics by two-dimensional gel electrophoresis, peptide mass fingerprint and a chemically-coded affinity tag (CCAT). J Biotechnol 2003;106:287–300 [CrossRef][PubMed]
    [Google Scholar]
  158. Watt SA, Wilke A, Patschkowski T, Niehaus K. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 2005;5:153–167 [CrossRef][PubMed]
    [Google Scholar]
  159. Sidhu VK, Vorhölter FJ, Niehaus K, Watt SA. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. BMC Microbiol 2008;8:87 [CrossRef][PubMed]
    [Google Scholar]
  160. Chung WJ, Shu HY, Lu CY, Wu CY, Tseng YH et al. Qualitative and comparative proteomic analysis of Xanthomonas campestris pv. campestris 17. Proteomics 2007;7:2047–2058 [CrossRef][PubMed]
    [Google Scholar]
  161. Watt SA, Tellström V, Patschkowski T, Niehaus K. Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of an oxidative burst reaction in tobacco cell suspension cultures. J Biotechnol 2006;126:78–86 [CrossRef][PubMed]
    [Google Scholar]
  162. de Bernonville TD, Albenne C, Arlat M, Hoffmann L, Lauber E et al. Xylem sap proteomics. Methods Mol Biol 2014;1072:391–405 [CrossRef][PubMed]
    [Google Scholar]
  163. Wilke A, Rückert C, Bartels D, Dondrup M, Goesmann A et al. Bioinformatics support for high-throughput proteomics. J Biotechnol 2003;106:147–156 [CrossRef][PubMed]
    [Google Scholar]
  164. Robin GP, Ortiz E, Szurek B, Brizard JP, Koebnik R. Comparative proteomics reveal new HrpX-regulated proteins of Xanthomonas oryzae pv. oryzae. J Proteomics 2014;97:256–264 [CrossRef][PubMed]
    [Google Scholar]
  165. Wang Y, Kim SG, Wu J, Huh HH, Lee SJ et al. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics 2013;13:1901–1912 [CrossRef][PubMed]
    [Google Scholar]
  166. Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C et al. Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 2013;13:186 [CrossRef][PubMed]
    [Google Scholar]
  167. Gerosa L, Sauer U. Regulation and control of metabolic fluxes in microbes. Curr Opin Biotechnol 2011;22:566–575 [CrossRef][PubMed]
    [Google Scholar]
  168. Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D et al. Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 2013;167:111–122 [CrossRef][PubMed]
    [Google Scholar]
  169. Kochanowski K, Sauer U, Noor E. Posttranslational regulation of microbial metabolism. Curr Opin Microbiol 2015;27:10–17 [CrossRef][PubMed]
    [Google Scholar]
  170. Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J Mass Spectrom 2009;44:1637–1660 [CrossRef][PubMed]
    [Google Scholar]
  171. Gouw JW, Krijgsveld J, Heck AJ. Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteomics 2010;9:11–24 [CrossRef][PubMed]
    [Google Scholar]
  172. Albaum SP, Neuweger H, Fränzel B, Lange S, Mertens D et al. Qupe—a rich internet application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments. Bioinformatics 2009;25:3128–3134 [CrossRef][PubMed]
    [Google Scholar]
  173. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007;26:51–78 [CrossRef][PubMed]
    [Google Scholar]
  174. Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev 2005;24:613–646 [CrossRef][PubMed]
    [Google Scholar]
  175. Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 2010;61:463–489 [CrossRef][PubMed]
    [Google Scholar]
  176. Zamboni N, Sauer U. Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 2009;12:553–558 [CrossRef][PubMed]
    [Google Scholar]
  177. Letisse F, Lindley ND. An intracellular metabolite quantification technique applicable to polysaccharide-producing bacteria. Biotechnol Lett 2000;22:1673–1677 [CrossRef]
    [Google Scholar]
  178. Watt TF, Vucur M, Baumgarth B, Watt SA, Niehaus K. Low molecular weight plant extract induces metabolic changes and the secretion of extracellular enzymes, but has a negative effect on the expression of the type-III secretion system in Xanthomonas campestris pv. campestris. J Biotechnol 2009;140:59–67 [CrossRef][PubMed]
    [Google Scholar]
  179. Pegos VR, Canevarolo RR, Sampaio AP, Balan A, Zeri AC. Xanthan gum removal for 1H-NMR analysis of the intracellular metabolome of the bacteria Xanthomonas axonopodis pv. citri 306. Metabolites 2014;4:218–231 [CrossRef][PubMed]
    [Google Scholar]
  180. Kessler N, Neuweger H, Bonte A, Langenkämper G, Niehaus K et al. MeltDB 2.0 – advances of the metabolomics software system. Bioinformatics 2013;29:2452–2459 [CrossRef][PubMed]
    [Google Scholar]
  181. Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T et al. MeltDB: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 2008;24:2726–2732 [CrossRef][PubMed]
    [Google Scholar]
  182. Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A et al. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Mol Biosyst 2014;10:2663–2676 [CrossRef][PubMed]
    [Google Scholar]
  183. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999;27:29–34 [CrossRef][PubMed]
    [Google Scholar]
  184. Kessler N, Walter F, Persicke M, Albaum SP, Kalinowski J et al. ALLocator: an interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis. PLoS One 2014;9:e113909 [CrossRef][PubMed]
    [Google Scholar]
  185. Durot M, Bourguignon PY, Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 2009;33:164–190 [CrossRef][PubMed]
    [Google Scholar]
  186. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson . Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009;7:129–143 [CrossRef][PubMed]
    [Google Scholar]
  187. Najafi A, Bidkhori G, Bozorgmehr JH, Koch I, Masoudi-Nejad A. Genome scale modeling in systems biology: algorithms and resources. Curr Genomics 2014;15:130–159 [CrossRef][PubMed]
    [Google Scholar]
  188. Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends Microbiol 2007;15:45–50 [CrossRef][PubMed]
    [Google Scholar]
  189. Hamilton JJ, Reed JL. Software platforms to facilitate reconstructing genome-scale metabolic networks. Environ Microbiol 2014;16:49–59 [CrossRef][PubMed]
    [Google Scholar]
  190. Thiele I, Palsson . A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010;5:93–121 [CrossRef][PubMed]
    [Google Scholar]
  191. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 2017;45:D543–D550 [CrossRef][PubMed]
    [Google Scholar]
  192. Mueller LA, Zhang P, Rhee SY. AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 2003;132:453–460 [CrossRef][PubMed]
    [Google Scholar]
  193. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM et al. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 2010;11:40–79 [CrossRef][PubMed]
    [Google Scholar]
  194. Karp PD, Paley S, Romero P. The Pathway Tools software. Bioinformatics 2002;18:S225–S232 [CrossRef][PubMed]
    [Google Scholar]
  195. Swainston N, Smallbone K, Mendes P, Kell D, Paton N. The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinform 2011;8:186 [CrossRef][PubMed]
    [Google Scholar]
  196. Henry CS, Dejongh M, Best AA, Frybarger PM, Linsay B et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010;28:977–982 [CrossRef][PubMed]
    [Google Scholar]
  197. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 2013;9:e1002980 [CrossRef][PubMed]
    [Google Scholar]
  198. Kitano H, Funahashi A, Matsuoka Y, Oda K. Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 2005;23:961–966 [CrossRef][PubMed]
    [Google Scholar]
  199. Schneider J, Vorhölter FJ, Trost E, Blom J, Musa YR et al. CARMEN - Comparative analysis and in silico reconstruction of organism-specific MEtabolic networks. Genet Mol Res 2010;9:1660–1672 [CrossRef][PubMed]
    [Google Scholar]
  200. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504 [CrossRef][PubMed]
    [Google Scholar]
  201. Barthelmes J, Ebeling C, Chang A, Schomburg I, Schomburg D. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 2007;35:D511–D514 [CrossRef][PubMed]
    [Google Scholar]
  202. Dejongh M, Formsma K, Boillot P, Gould J, Rycenga M et al. Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 2007;8:139 [CrossRef][PubMed]
    [Google Scholar]
  203. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  204. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol Biol 2007;406:89–112[PubMed]
    [Google Scholar]
  205. Zagallo AC, Wang CH. Comparative glucose catabolism of Xanthomonas species. J Bacteriol 1967;93:970–975[PubMed]
    [Google Scholar]
  206. Kim SY, Lee BM, Cho JY. Relationship between glucose catabolism and xanthan production in Xanthomonas oryzae pv. oryzae. Biotechnol Lett 2010;32:527–531 [CrossRef][PubMed]
    [Google Scholar]
  207. Pielken P, Schimz KL, Eggeling L, Sahm H. Glucose metabolism in Xanthomonas campestris and influence of methionine on the carbon flow. Can J Microbiol 1988;34:1333–1337 [CrossRef][PubMed]
    [Google Scholar]
  208. Chen WW, Niepel M, Sorger PK. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 2010;24:1861–1875 [CrossRef][PubMed]
    [Google Scholar]
  209. Resat H, Petzold L, Pettigrew MF. Kinetic modeling of biological systems. Methods Mol Biol 2009;541:311–335 [CrossRef][PubMed]
    [Google Scholar]
  210. Proß S, Bachmann B, Hofestädt R, Niehaus K, Ueckerdt R et al. Modeling a bacterium’s life: a petri-net library in modelica. In Modelica Conference Proceedings Como, Italy 2009
    [Google Scholar]
  211. Klamt S, Stelling J. Stoichiometric and constraint-based modelling. In Szallasi Z, Stelling J, Periwal V. (editors) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts Cambridge: MIT Press; 2006; pp.73–96[CrossRef]
    [Google Scholar]
  212. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 2011;7:445–452 [CrossRef][PubMed]
    [Google Scholar]
  213. Ahn YY, Lee DS, Burd H, Blank W, Kapatral V. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents. PLoS One 2014;9:e85195 [CrossRef][PubMed]
    [Google Scholar]
  214. Hartman HB, Fell DA, Rossell S, Jensen PR, Woodward MJ et al. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation. Microbiology 2014;160:1252–1266 [CrossRef][PubMed]
    [Google Scholar]
  215. Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ et al. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol 2011;7:460 [CrossRef][PubMed]
    [Google Scholar]
  216. Shen Y, Liu J, Estiu G, Isin B, Ahn YY et al. Blueprint for antimicrobial hit discovery targeting metabolic networks. Proc Natl Acad Sci USA 2010;107:1082–1087 [CrossRef][PubMed]
    [Google Scholar]
  217. Morris SGA, Harding SE. Polysaccharides, microbial. In Schaechter M. (editor) Encyclopedia of Microbiology, 3rd ed. Amsterdam: Elsevier; 2009; pp.482–494[CrossRef]
    [Google Scholar]
  218. Wiechert W. 13C metabolic flux analysis. Metab Eng 2001;3:195–206 [CrossRef][PubMed]
    [Google Scholar]
  219. Nöh K, Wiechert W. The benefits of being transient: isotope-based metabolic flux analysis at the short time scale. Appl Microbiol Biotechnol 2011;91:1247–1265 [CrossRef][PubMed]
    [Google Scholar]
  220. Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2006;2:62 [CrossRef][PubMed]
    [Google Scholar]
  221. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE et al. Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 2009;28:362–375 [CrossRef][PubMed]
    [Google Scholar]
  222. Wittmann C. Fluxome analysis using GC-MS. Microb Cell Fact 2007;6:6 [CrossRef][PubMed]
    [Google Scholar]
  223. Fischer E, Sauer U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 2003;270:880–891 [CrossRef][PubMed]
    [Google Scholar]
  224. Zamboni N, Fendt SM, Rühl M, Sauer U. 13C-based metabolic flux analysis. Nat Protoc 2009;4:878–892 [CrossRef][PubMed]
    [Google Scholar]
  225. Quek LE, Wittmann C, Nielsen LK, Krömer JO. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 2009;8:25 [CrossRef][PubMed]
    [Google Scholar]
  226. Kajihata S, Furusawa C, Matsuda F, Shimizu H. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis. Biomed Res Int 2014;2014:e627014 [CrossRef][PubMed]
    [Google Scholar]
  227. Sokol S, Millard P, Portais JC. influx_s: Increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments. Bioinformatics 2012;28:687–693 [CrossRef][PubMed]
    [Google Scholar]
  228. Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B et al. 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 2013;29:143–145 [CrossRef][PubMed]
    [Google Scholar]
  229. Frese M, Schatschneider S, Voss J, Vorhölter FJ, Niehaus K. Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris. Arch Biochem Biophys 2014;546:53–63 [CrossRef][PubMed]
    [Google Scholar]
  230. Bordbar A, Lewis NE, Schellenberger J, Palsson , Jamshidi N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 2010;6:422 [CrossRef][PubMed]
    [Google Scholar]
  231. Beste DJ, Nöh K, Niedenführ S, Mendum TA, Hawkins ND et al. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 2013;20:1012–1021 [CrossRef][PubMed]
    [Google Scholar]
  232. Heinken A, Thiele I. Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 2015;6:120–130 [CrossRef][PubMed]
    [Google Scholar]
  233. Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson . A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol 2010;4:140 [CrossRef][PubMed]
    [Google Scholar]
  234. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005;307:1955–1959 [CrossRef][PubMed]
    [Google Scholar]
  235. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 2013;31:419–425 [CrossRef][PubMed]
    [Google Scholar]
  236. Heinken A, Thiele I. Systems biology of host-microbe metabolomics. Wiley Interdiscip Rev Syst Biol Med 2015;7:195–219 [CrossRef][PubMed]
    [Google Scholar]
  237. de Oliveira dal'molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 2010;152:579–589 [CrossRef][PubMed]
    [Google Scholar]
  238. Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A et al. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci USA 2012;109:339–344 [CrossRef][PubMed]
    [Google Scholar]
  239. Saha R, Chowdhury A, Maranas CD. Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol 2014;29:39–45 [CrossRef][PubMed]
    [Google Scholar]
  240. Grafahrend-Belau E, Junker A, Eschenröder A, Müller J, Schreiber F et al. Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 2013;163:637–647 [CrossRef][PubMed]
    [Google Scholar]
  241. Jaenicke S, Bunk B, Wibberg D, Spröer C, Hersemann L et al. Complete genome sequence of the barley pathogen Xanthomonas translucens pv. translucens DSM 18974T (ATCC 19319T). Genome Announc 2016;4:e01334-16 [CrossRef][PubMed]
    [Google Scholar]
  242. Gardiner DM, Upadhyaya NM, Stiller J, Ellis JG, Dodds PN et al. Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems. PLoS One 2014;9:e84995 [CrossRef][PubMed]
    [Google Scholar]
  243. Mithani A, Hein J, Preston GM. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas. Mol Biol Evol 2011;28:483–499 [CrossRef][PubMed]
    [Google Scholar]
  244. Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS Pathog 2016;12:e1005939 [CrossRef][PubMed]
    [Google Scholar]
  245. Wang C, Deng ZL, Xie ZM, Chu XY, Chang JW et al. Construction of a genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum provides new strategies for bactericide discovery. FEBS Lett 2015;589:285–294 [CrossRef][PubMed]
    [Google Scholar]
  246. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 2011;5:305–316 [CrossRef][PubMed]
    [Google Scholar]
  247. Solé M, Scheibner F, Hoffmeister AK, Hartmann N, Hause G et al. Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps-type II secretion system and outer membrane vesicles. J Bacteriol 2015;197:2879–2893 [CrossRef][PubMed]
    [Google Scholar]
  248. Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V et al. Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol 2010;187:983–1002 [CrossRef][PubMed]
    [Google Scholar]
  249. Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front Plant Sci 2014;5:446 [CrossRef][PubMed]
    [Google Scholar]
  250. Boulanger A, Zischek C, Lautier M, Jamet S, Rival P et al. The plant pathogen Xanthomonas campestris pv. campestris exploits N-acetylglucosamine during infection. MBio 2014;5:e01527-14 [CrossRef][PubMed]
    [Google Scholar]
  251. Wiggerich HG, Klauke B, Köplin R, Priefer UB, Pühler A. Unusual structure of the tonB-exb DNA region of Xanthomonas campestris pv. campestris: tonB, exbB, and exbD1 are essential for ferric iron uptake, but exbD2 is not. J Bacteriol 1997;179:7103–7110 [CrossRef][PubMed]
    [Google Scholar]
  252. Büttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 2010;34:107–133 [CrossRef][PubMed]
    [Google Scholar]
  253. Fraiture M, Brunner F. Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria. Front Microbiol 2014;5:320 [CrossRef][PubMed]
    [Google Scholar]
  254. Schwessinger B, Zipfel C. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 2008;11:389–395 [CrossRef][PubMed]
    [Google Scholar]
  255. Boch J, Bonas U, Lahaye T. TAL effectors – pathogen strategies and plant resistance engineering. New Phytol 2014;204:823–832 [CrossRef][PubMed]
    [Google Scholar]
  256. Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE et al. TAL effectors drive transcription bidirectionally in plants. Mol Plant 2017;10:285–296 [CrossRef][PubMed]
    [Google Scholar]
  257. Freeman BC, Gwyn AB. An overview of plant defenses against pathogens and herbivores. Plant Health Instructor 2008; [CrossRef]
    [Google Scholar]
  258. Lamb CJ, Lawton MA, Dron M, Dixon RA. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 1989;56:215–224 [CrossRef][PubMed]
    [Google Scholar]
  259. Haldar S, Sengupta S. Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 2015;9:1–7 [CrossRef][PubMed]
    [Google Scholar]
  260. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012;10:828–840 [CrossRef][PubMed]
    [Google Scholar]
  261. Ahmad AA, Ogawa M, Kawasaki T, Fujie M, Yamada T. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri. Appl Environ Microbiol 2014;80:77–85 [CrossRef][PubMed]
    [Google Scholar]
  262. Alippi AM. Host range and particle morphology of some bacteriophages affecting pathovars of Xanthomonas campestris. Microbiologia 1989;5:35–43[PubMed]
    [Google Scholar]
  263. Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 2010;64:475–493 [CrossRef][PubMed]
    [Google Scholar]
  264. Díaz-Muñoz SL, Koskella B. Bacteria–phage interactions in natural environments. In: Advances in Applied Microbiology. Elsevier; 2014; pp.135–183
    [Google Scholar]
  265. Vidaver AK, Schuster ML. Characterization of Xanthomonas phaseoli bacteriophages. J Virol 1969;4:300–308[PubMed]
    [Google Scholar]
  266. Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 2015;11:e1004986 [CrossRef][PubMed]
    [Google Scholar]
  267. Royer M, Koebnik R, Marguerettaz M, Barbe V, Robin GP et al. Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics 2013;14:658 [CrossRef][PubMed]
    [Google Scholar]
  268. Goesmann A, Linke B, Rupp O, Krause L, Bartels D et al. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. J Biotechnol 2003;106:157–167 [CrossRef][PubMed]
    [Google Scholar]
  269. Bekel T, Henckel K, Küster H, Meyer F, Mittard Runte V et al. The Sequence Analysis and Management System – SAMS-2.0: data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies. J Biotechnol 2009;140:3–12 [CrossRef][PubMed]
    [Google Scholar]
  270. Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 2007;1:2 [CrossRef][PubMed]
    [Google Scholar]
  271. Becker SA, Feist AM, Mo ML, Hannum G, Palsson et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007;2:727–738 [CrossRef][PubMed]
    [Google Scholar]
  272. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 2016;17:877–890 [CrossRef][PubMed]
    [Google Scholar]
  273. Liao CT, Liu YF, Chiang YC, Lo HH, Du SC et al. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol 2016;167:299–312 [CrossRef][PubMed]
    [Google Scholar]
  274. Noh TH, Song ES, Kim HI, Kang MH, Park YJ. Transcriptome-based identification of differently expressed genes from Xanthomonas oryzae pv. oryzae strains exhibiting different virulence in rice varieties. Int J Mol Sci 2016;17:259 [CrossRef][PubMed]
    [Google Scholar]
  275. Du H, Wang Y, Yang J, Yang W. Comparative transcriptome analysis of resistant and susceptible tomato lines in response to infection by Xanthomonas perforans race T3. Front Plant Sci 2015;6:1173 [CrossRef][PubMed]
    [Google Scholar]
  276. Wilkins KE, Booher NJ, Wang L, Bogdanove AJ. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Front Plant Sci 2015;6:536 [CrossRef][PubMed]
    [Google Scholar]
  277. Socquet-Juglard D, Kamber T, Pothier JF, Christen D, Gessler C et al. Comparative RNA-seq analysis of early-infected peach leaves by the invasive phytopathogen Xanthomonas arboricola pv. pruni. PLoS One 2013;8:e54196 [CrossRef][PubMed]
    [Google Scholar]
  278. Zhang F, Zhang F, Huang L, Cruz CV, Ali J et al. Overlap between signaling pathways responsive to Xanthomonas oryzae pv. oryzae infection and drought stress in rice introgression line revealed by RNA-seq. J Plant Growth Regul 2015;14:1
    [Google Scholar]
  279. Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact 2014;27:1186–1198 [CrossRef][PubMed]
    [Google Scholar]
  280. An SQ, Allan JH, McCarthy Y, Febrer M, Dow JM et al. The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of Xanthomonas campestris. Mol Microbiol 2014;92:586–597 [CrossRef][PubMed]
    [Google Scholar]
  281. Muñoz-Bodnar A, Perez-Quintero AL, Gomez-Cano F, Gil J, Michelmore R et al. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. Plant Cell Rep 2014;33:1901–1912 [CrossRef][PubMed]
    [Google Scholar]
  282. Jalan N, Kumar D, Andrade MO, Yu F, Jones JB et al. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 2013;14:551 [CrossRef][PubMed]
    [Google Scholar]
  283. Zhang F, Huang LY, Zhang F, Ali J, Cruz CV et al. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics 2015;16:111 [CrossRef][PubMed]
    [Google Scholar]
  284. Li Z, Zou L, Ye G, Xiong L, Ji Z et al. A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Mol Plant 2014;7:912–915 [CrossRef][PubMed]
    [Google Scholar]
  285. Zhang F, Du Z, Huang L, vera Cruz C, Zhou Y et al. Comparative transcriptome profiling reveals different expression patterns in Xanthomonas oryzae pv. oryzae strains with putative virulence-relevant genes. PLoS One 2013;8:e64267 [CrossRef][PubMed]
    [Google Scholar]
  286. Yu C, Chen H, Tian F, Leach JE, He C. Differentially-expressed genes in rice infected by Xanthomonas oryzae pv. oryzae relative to a flagellin-deficient mutant reveal potential functions of flagellin in host–pathogen interactions. Rice 2014;7:20 [CrossRef][PubMed]
    [Google Scholar]
  287. Strauss T, van Poecke RM, Strauss A, Römer P, Minsavage GV et al. RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proc Natl Acad Sci USA 2012;109:19480–19485 [CrossRef][PubMed]
    [Google Scholar]
  288. Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M et al. Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst Biol 2009;3:82 [CrossRef][PubMed]
    [Google Scholar]
  289. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  290. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  291. Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res 2002;30:47–49 [CrossRef][PubMed]
    [Google Scholar]
  292. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C et al. BRENDA, the enzyme information system in 2011. Nucleic Acids Res 2011;39:D670–D676 [CrossRef][PubMed]
    [Google Scholar]
  293. Saier MH, Tran CV, Barabote RD. TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 2006;34:D181–D186 [CrossRef][PubMed]
    [Google Scholar]
  294. Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 2003;31:6633–6639 [CrossRef][PubMed]
    [Google Scholar]
  295. Bairoch A. The ENZYME database in 2000. Nucleic Acids Res 2000;28:304–305 [CrossRef][PubMed]
    [Google Scholar]
  296. Nagano N. EzCatDB: the enzyme catalytic-mechanism database. Nucleic Acids Res 2005;33:D407–D412 [CrossRef][PubMed]
    [Google Scholar]
  297. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009;37:D233–D238 [CrossRef][PubMed]
    [Google Scholar]
  298. Andrade AE, Silva LP, Pereira JL, Noronha EF, Reis FB et al. In vivo proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the host plant Brassica oleracea. FEMS Microbiol Lett 2008;281:167–174 [CrossRef][PubMed]
    [Google Scholar]
  299. Soares MR, Facincani AP, Ferreira RM, Moreira LM, de Oliveira JC et al. Proteome of the phytopathogen Xanthomonas citri subsp. citri: a global expression profile. Proteome Sci 2010;8:55 [CrossRef][PubMed]
    [Google Scholar]
  300. Villeth GR, Reis FB, Tonietto A, Huergo L, de Souza EM et al. Comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol Lett 2009;298:260–266 [CrossRef][PubMed]
    [Google Scholar]
  301. González JF, Degrassi G, Devescovi G, de Vleesschauwer D, Höfte M et al. A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap. J Proteomics 2012;75:5911–5919 [CrossRef][PubMed]
    [Google Scholar]
  302. Hou Y, Tong X, Wang Y, Qiu J, Li Z et al. Data set from a comprehensive phosphoproteomic analysis of rice variety IRBB5 in response to bacterial blight. Data Brief 2016;6:282–285 [CrossRef][PubMed]
    [Google Scholar]
  303. Hou Y, Qiu J, Tong X, Wei X, Nallamilli BR et al. A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. BMC Plant Biol 2015;15:163 [CrossRef][PubMed]
    [Google Scholar]
  304. Villeth GR, Carmo LS, Silva LP, Santos MF, de Oliveira Neto OB et al. Identification of proteins in susceptible and resistant Brassica oleracea responsive to Xanthomonas campestris pv. campestris infection. J Proteomics 2016;143:278–285 [CrossRef][PubMed]
    [Google Scholar]
  305. Kumar A, Bimolata W, Kannan M, Kirti PB, Qureshi IA et al. Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection. Funct Integr Genomics 2015;15:425–437 [CrossRef][PubMed]
    [Google Scholar]
  306. Park HJ, Lee SW, Han SW. Proteomic and functional analyses of a novel porin-like protein in Xanthomonas oryzae pv. oryzae. J Microbiol 2014;52:1030–1035 [CrossRef][PubMed]
    [Google Scholar]
  307. Park HJ, Jung HW, Han SW. Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem Biophys Res Commun 2014;452:389–394 [CrossRef][PubMed]
    [Google Scholar]
  308. Pegos VR, Nascimento JF, Sobreira TJ, Pauletti BA, Paes-Leme A et al. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach. J Proteomics 2014;108:78–88 [CrossRef][PubMed]
    [Google Scholar]
  309. Facincani AP, Moreira LM, Soares MR, Ferreira CB, Ferreira RM et al. Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri. Funct Integr Genomics 2014;14:205–217 [CrossRef][PubMed]
    [Google Scholar]
  310. Deng CY, Deng AH, Sun ST, Wang L, Wu J et al. The periplasmic PDZ domain–containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 2014;27:101–112 [CrossRef][PubMed]
    [Google Scholar]
  311. Yuan Z, Wang L, Sun S, Wu Y, Qian W. Genetic and proteomic analyses of a Xanthomonas campestris pv. campestris purC mutant deficient in purine biosynthesis and virulence. J Genet Genomics 2013;40:473–487 [CrossRef][PubMed]
    [Google Scholar]
  312. O'Connell A, An SQ, McCarthy Y, Schulte F, Niehaus K et al. Proteomics analysis of the regulatory role of Rpf/DSF cell-to-cell signaling system in the virulence of Xanthomonas campestris. Mol Plant Microbe Interact 2013;26:1131–1137 [CrossRef][PubMed]
    [Google Scholar]
  313. Xu S, Luo J, Pan X, Liang X, Wu J et al. Proteome analysis of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. Biochim Biophys Acta 2013;1834:1660–1670 [CrossRef][PubMed]
    [Google Scholar]
  314. Qian G, Zhou Y, Zhao Y, Song Z, Wang S et al. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 2013;12:3327–3341 [CrossRef][PubMed]
    [Google Scholar]
  315. Liang H, Zhao YT, Zhang JQ, Wang XJ, Fang RX et al. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics 2011;12:87 [CrossRef][PubMed]
    [Google Scholar]
  316. Zhao Y, Qian G, Yin F, Fan J, Zhai Z et al. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microb Pathog 2011;50:48–55 [CrossRef][PubMed]
    [Google Scholar]
  317. Garavaglia BS, Thomas L, Zimaro T, Gottig N, Daurelio LD et al. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC Plant Biol 2010;10:51 [CrossRef][PubMed]
    [Google Scholar]
  318. Chen F, Yuan Y, Li Q, He Z. Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 2007;7:1529–1539 [CrossRef][PubMed]
    [Google Scholar]
  319. Mahmood T, Jan A, Kakishima M, Komatsu S. Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 2006;6:6053–6065 [CrossRef][PubMed]
    [Google Scholar]
  320. Mehta A, Rosato YB. Differentially expressed proteins in the interaction of Xanthomonas axonopodis pv. citri with leaf extract of the host plant. Proteomics 2001;1:1111–1118 [CrossRef][PubMed]
    [Google Scholar]
  321. Tahara ST, Mehta A, Rosato YB. Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis). Proteomics 2003;3:95–102 [CrossRef][PubMed]
    [Google Scholar]
  322. Galvão-Botton LM, Katsuyama AM, Guzzo CR, Almeida FC, Farah CS et al. High-throughput screening of structural proteomics targets using NMR. FEBS Lett 2003;552:207–213 [CrossRef][PubMed]
    [Google Scholar]
  323. Ferreira RM, Moreira LM, Ferro JA, Soares MR, Laia ML et al. Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis. PeerJ 2016;4:e1734 [CrossRef][PubMed]
    [Google Scholar]
  324. Chen X, Deng Z, Yu C, Yan C, Chen J. Secretome analysis of rice suspension-cultured cells infected by Xanthomonas oryzae pv.oryza (Xoo). Proteome Sci 2016;14:2 [CrossRef][PubMed]
    [Google Scholar]
  325. Wang Y, Kim SG, Wu J, Kim ST, Kang KY. Differential proteome and secretome analysis during rice-pathogen interaction. Methods Mol Biol 2014;1072:563–572 [CrossRef][PubMed]
    [Google Scholar]
  326. Sana TR, Fischer S, Wohlgemuth G, Katrekar A, Jung KH et al. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics 2010;6:451–465 [CrossRef][PubMed]
    [Google Scholar]
  327. Fisher S, Sana T. Metabolomic profiling of bacterial leaf blight in rice. Appl Note 2007; https://www.agilent.com/cs/
    [Google Scholar]
  328. Hsu C-H, Lo YM, Ym L. Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. Process Biochem 2003;38:1617–1625 [CrossRef]
    [Google Scholar]
  329. Kim MS, Jin JS, Kwak YS, Hwang GS. Metabolic response of strawberry (Fragaria x ananassa) leaves exposed to the angular leaf spot bacterium (Xanthomonas fragariae). J Agric Food Chem 2016;64:1889–1898 [CrossRef][PubMed]
    [Google Scholar]
  330. Urban M, Pant R, Raghunath A, Irvine AG, Pedro H et al. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res 2015;43:D645–D655 [CrossRef][PubMed]
    [Google Scholar]
  331. Durmuş Tekir S, Çakır T, Ardiç E, Sayılırbaş AS, Konuk G et al. PHISTO: pathogen-host interaction search tool. Bioinformatics 2013;29:1357–1358 [CrossRef][PubMed]
    [Google Scholar]
  332. Xiang Z, Tian Y, He Y. PHIDIAS: a pathogen-host interaction data integration and analysis system. Genome Biol 2007;8:R150 [CrossRef][PubMed]
    [Google Scholar]
  333. Driscoll T, Gabbard JL, Mao C, Dalay O, Shukla M et al. Integration and visualization of host-pathogen data related to infectious diseases. Bioinformatics 2011;27:2279–2287 [CrossRef][PubMed]
    [Google Scholar]
  334. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014;42:D581–D591 [CrossRef][PubMed]
    [Google Scholar]
  335. Pedro H, Maheswari U, Urban M, Irvine AG, Cuzick A et al. PhytoPath: an integrative resource for plant pathogen genomics. Nucleic Acids Res 2016;44:D688–D693 [CrossRef][PubMed]
    [Google Scholar]
  336. Kumar R, Nanduri B. HPIDB - a unified resource for host-pathogen interactions. BMC Bioinformatics 2010;11:16 [CrossRef][PubMed]
    [Google Scholar]
  337. Wardeh M, Risley C, McIntyre MK, Setzkorn C, Baylis M. Database of host-pathogen and related species interactions, and their global distribution. Sci Data 2015;2:150049 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000473
Loading
/content/journal/micro/10.1099/mic.0.000473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error