1887

Abstract

Corynebacterium diphtheriae is typically recognized as the a etiological agent of diphtheria, a toxaemic infection of the respiratory tract; however, both non-toxigenic and toxigenic strains are increasingly isolated from cases of invasive infections. The molecular mechanisms responsible for bacterial colonization and dissemination to host tissues remain only partially understood. In this report, we investigated the role of DIP2093, described as a putative adhesin of the serine-aspartate repeat (Sdr) protein family in host–pathogen interactions of C. diphtheriae wild-type strain NCTC13129. Compared to the parental strain, a DIP2093 mutant RN generated in this study was attenuated in its ability to bind to type I collagen, to adhere to and invade epithelial cells, as well as to survive within macrophages. Furthermore, DIP2093 mutant strain RN had a less detrimental impact on the viability of Caenorhabditis elegans as well as in the clinical severity of arthritis in mice. In conclusion, DIP2093 functions as a microbial surface component recognizing adhesive matrix molecules, and may be included among the factors that contribute to the pathogenicity of C. diphtheriae strains, independently of toxin production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000467
2017-05-24
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/5/692.html?itemId=/content/journal/micro/10.1099/mic.0.000467&mimeType=html&fmt=ahah

References

  1. Alexander D. Splenic abscess caused by Corynebacterium diphtheriae. Clin Pediatr 1984;23:591–592 [CrossRef][PubMed]
    [Google Scholar]
  2. Poilane I, Fawaz F, Nathanson M, Cruaud P, Martin T et al. Corynebacterium diphtheriae osteomyelitis in an immunocompetent child: a case report. Eur J Pediatr 1995;154:381–383 [CrossRef][PubMed]
    [Google Scholar]
  3. Belko J, Wessel DL, Malley R. Endocarditis caused by Corynebacterium diphtheriae: case report and review of the literature. Pediatr Infect Dis J 2000;19:159–163 [CrossRef][PubMed]
    [Google Scholar]
  4. Mattos-Guaraldi AL, Formiga LCD, Marques EA, Pereira GA, Moreira LO et al. Diphtheria in a vaccinated adult in Rio de Janeiro, Brazil. Braz J Microbiol 2001;32:236–239 [CrossRef]
    [Google Scholar]
  5. Hirata R, Napoleão F, Monteiro-Leal LH, Andrade AF, Nagao PE et al. Intracellular viability of toxigenic Corynebacterium diphtheriae strains in HEp-2 cells. FEMS Microbiol Lett 2002;215:115–119 [CrossRef][PubMed]
    [Google Scholar]
  6. Puliti M, von Hunolstein C, Marangi M, Bistoni F, Tissi L. Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J Med Microbiol 2006;55:229–235 [CrossRef][PubMed]
    [Google Scholar]
  7. Gomes DL, Martins CA, Faria LM, Santos LS, Santos CS et al. Corynebacterium diphtheriae as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence. J Med Microbiol 2009;58:1419–1427 [CrossRef][PubMed]
    [Google Scholar]
  8. Dias AA, Silva FC, Santos LS, Ribeiro-Carvalho MM, Sabbadini PS et al. Strain-dependent arthritogenic potential of the zoonotic pathogen Corynebacterium ulcerans. Vet Microbiol 2011;153:323–331 [CrossRef][PubMed]
    [Google Scholar]
  9. Stavracakis-Peixoto R, Siqueira GCO, Luca FM, Santanna LO, Santos LS et al. Aspectos fenotípicos e do potencial patogênico de amostra de Corynebacterium diphtheriae isolada de processo de osteomielite em paciente com neoplasia. Rev Bras Anal Clin 2011;43:230–236
    [Google Scholar]
  10. Burkovski A. Diphtheria. In Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E et al. (editors) The Prokaryotes, 4th ed.vol. 5 New York: Springer; 2013; pp.237–246[CrossRef]
    [Google Scholar]
  11. Burkovski A. Diphtheria and its etiological agents. In Burkovski A. (editor) Corynebacterium Diphtheriae and Related Toxigenic Species Dordrecht: Springer; 2013; pp.1–14
    [Google Scholar]
  12. Peixoto RS, Pereira GA, Sanches dos Santos L, Rocha-de-Souza CM, Gomes DL et al. Invasion of endothelial cells and arthritogenic potential of endocarditis-associated Corynebacterium diphtheriae. Microbiology 2014;160:537–546 [CrossRef][PubMed]
    [Google Scholar]
  13. Peixoto RS, Hacker E, Antunes CA, Weerasekera D, Dias AA et al. Pathogenic properties of a Corynebacterium diphtheriae strain isolated from a case of osteomyelitis. J Med Microbiol 2016;65:1311–1321 [CrossRef][PubMed]
    [Google Scholar]
  14. Trost E, Blom J, Soares SC, Huang IH, Al-Dilaimi A et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 2012;194:3199–3215 [CrossRef][PubMed]
    [Google Scholar]
  15. Bertuccini L, Baldassarri L, von Hunolstein C. Internalization of non-toxigenic Corynebacterium diphtheriae by cultured human respiratory epithelial cells. Microb Pathog 2004;37:111–118 [CrossRef][PubMed]
    [Google Scholar]
  16. dos Santos CS, dos Santos LS, de Souza MC, dos Santos Dourado F, de Souza de Oliveira Dias AA et al. Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophages. Microbiol Immunol 2010;54:1–10 [CrossRef][PubMed]
    [Google Scholar]
  17. Ott L, Höller M, Rheinlaender J, Schäffer TE, Hensel M et al. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 2010;10:257 [CrossRef][PubMed]
    [Google Scholar]
  18. Antunes CA, Sanches dos Santos L, Hacker E, Köhler S, Bösl K et al. Characterization of DIP0733, a multi-functional virulence factor of Corynebacterium diphtheriae. Microbiology 2015;161:639–647 [CrossRef][PubMed]
    [Google Scholar]
  19. Hacker E, Ott L, Hasselt K, Mattos-Guaraldi AL, Tauch A et al. Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources. Microbiology 2015;161:1582–1591 [CrossRef][PubMed]
    [Google Scholar]
  20. Hacker E, Ott L, Schulze-Luehrmann J, Lührmann A, Wiesmann V et al. The killing of macrophages by Corynebacterium ulcerans. Virulence 2016;7:45–55 [CrossRef][PubMed]
    [Google Scholar]
  21. Sabbadini PS, Assis MC, Trost E, Gomes DL, Moreira LO et al. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog 2012;52:165–176 [CrossRef][PubMed]
    [Google Scholar]
  22. Mattos-Guaraldi AL, Duarte Formiga LC, Pereira GA. Cell surface components and adhesion in Corynebacterium diphtheriae. Microbes Infect 2000;2:1507–1512 [CrossRef][PubMed]
    [Google Scholar]
  23. de Mattos-Guaraldi AL, Formiga LC. Bacteriological properties of a sucrose-fermenting Corynebacterium diphtheriae strain isolated from a case of endocarditis. Curr Microbiol 1998;37:156–158 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim S, Oh DB, Kwon O, Kang HA. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J Biochem 2010;147:523–533 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim S, Oh DB, Kwon O, Kang HA. Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010;88:893–903 [CrossRef][PubMed]
    [Google Scholar]
  26. Mattos-Guaraldi AL, Formiga LCD. Hemagglutination pattern of Corynebacterium diphtheriae. Rev Microbiol 1992;23:8–12
    [Google Scholar]
  27. Moreira LO, Mattos-Guaraldi AL, Andrade AF. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 2008;190:521–530 [CrossRef][PubMed]
    [Google Scholar]
  28. Gaspar AH, Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol 2006;188:1526–1533 [CrossRef][PubMed]
    [Google Scholar]
  29. Mandlik A, Swierczynski A, das A, Ton-That H. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 2007;64:111–124 [CrossRef][PubMed]
    [Google Scholar]
  30. Rogers EA, das A, Ton-That H. Adhesion by pathogenic corynebacteria. Adv Exp Med Biol 2011;715:91–103 [CrossRef][PubMed]
    [Google Scholar]
  31. Rheinlaender J, Gräbner A, Ott L, Burkovski A, Schäffer TE. Contour and persistence length of Corynebacterium diphtheriae pili by atomic force microscopy. Eur Biophys J 2012;41:561–570 [CrossRef][PubMed]
    [Google Scholar]
  32. Reardon-Robinson ME, Ton-That H. Disulfide-bond-forming pathways in gram-positive bacteria. J Bacteriol 2015;198:746–754 [CrossRef][PubMed]
    [Google Scholar]
  33. Santos LS, Antunes CA, Santos CS, Pereira JA, Sabbadini PS et al. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans. Mem Inst Oswaldo Cruz 2015;110:662–668 [CrossRef][PubMed]
    [Google Scholar]
  34. Colombo AV, Hirata R Jr, de Souza CM, Monteiro-Leal LH, Previato JO et al. Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett 2001;197:235–239 [CrossRef][PubMed]
    [Google Scholar]
  35. Josefsson E, O'Connell D, Foster TJ, Durussel I, Cox JA. The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus. J Biol Chem 1998;273:31145–31152 [CrossRef][PubMed]
    [Google Scholar]
  36. Josefsson E, Mccrea KW, Ní Eidhin D, O'Connell D, Cox J et al. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 1998;144:3387–3395 [CrossRef][PubMed]
    [Google Scholar]
  37. Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 2003;31:6516–6523 [CrossRef][PubMed]
    [Google Scholar]
  38. D'Afonseca V, Soares SC, Ali A, Santos AR, Pinto AC et al. Reannotation of the Corynebacterium diphtheriae NCTC13129 genome as a new approach to studying gene targets connected to virulence and pathogenicity in diphtheria. Bioinformatics 2011;4:1–13
    [Google Scholar]
  39. Soares SC, Silva A, Trost E, Blom J, Ramos R et al. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One 2013;8:e53818 [CrossRef][PubMed]
    [Google Scholar]
  40. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014;12:49–62 [CrossRef][PubMed]
    [Google Scholar]
  41. Birkenhauer E, Neethirajan S, Weese JS. Collagen and hyaluronan at wound sites influence early polymicrobial biofilm adhesive events. BMC Microbiol 2014;14:191 [CrossRef][PubMed]
    [Google Scholar]
  42. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  43. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 2013;30:1229–1235 [CrossRef][PubMed]
    [Google Scholar]
  44. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015;43:D222–D226 [CrossRef][PubMed]
    [Google Scholar]
  45. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  46. Sambrook J, Fritschi EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  47. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994;145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  48. Jakoby M, Ngouoto-Nkili C-E, Burkovski A. Construction and application of New Corynebacterium glutamicum vectors. Biotechnology Techniques 1999;13:437–441 [CrossRef]
    [Google Scholar]
  49. de Bono M, Bargmann CI. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 1998;94:679–689 [CrossRef][PubMed]
    [Google Scholar]
  50. Browning DF, Wells TJ, França FL, Morris FC, Sevastsyanovich YR et al. Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 2013;87:939–950 [CrossRef][PubMed]
    [Google Scholar]
  51. Balzer A, Gleixner G, Grupe G, Schmidt H-L, Schramm S et al. In vitro decomposition of bone collagen by soil bacteria: the implications for stable isotope analysis in archaeometry. Archaeometry 1997;39:415–429 [CrossRef]
    [Google Scholar]
  52. Gelse K, Pöschl E, Aigner T. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 2003;55:1531–1546 [CrossRef][PubMed]
    [Google Scholar]
  53. Ott L, Burkovski A. Toxigenic corynebacteria: adhesion, invasion and host response. In Burkovski A. (editor) Corynebacterium Diphtheriae and Related Toxigenic Species Dordrecht: Springer; 2014; pp.143–170[CrossRef]
    [Google Scholar]
  54. Roman AY, Devred F, Lobatchov VM, Makarov AA, Peyrot V et al. Sequential binding of calcium ions to the B-repeat domain of SdrD from Staphylococcus aureus. Can J Microbiol 2016;62:123–129 [CrossRef][PubMed]
    [Google Scholar]
  55. Herman-Bausier P, Valotteau C, Pietrocola G, Rindi S, Alsteens D et al. Mechanical strength and inhibition of the Staphylococcus aureus Collagen-Binding protein Cna. MBio 2016;7:e01529-16 [CrossRef][PubMed]
    [Google Scholar]
  56. Bremell T, Lange S, Yacoub A, Rydén C, Tarkowski A. Experimental Staphylococcus aureus arthritis in mice. Infect Immun 1991;59:2615–2623[PubMed]
    [Google Scholar]
  57. Tissi L, Puliti M, Barluzzi R, Orefici G, von Hunolstein C et al. Role of tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in a mouse model of group B streptococcal arthritis. Infect Immun 1991;67:4545–4550
    [Google Scholar]
  58. Puliti M, Bistoni F, von Hunolstein C, Orefici G, Tissi L. Severity of group B streptococcal arthritis in selected strains of laboratory mice. Infect Immun 2001;69:551–555 [CrossRef][PubMed]
    [Google Scholar]
  59. Public Health Laboratory Service Diphtheria acquired during a cruise in the Baltic Sea. Commun Dis Rep CDR Wkly 1997;7:207[PubMed]
    [Google Scholar]
  60. Grant SG, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 1990;87:4645–4649 [CrossRef][PubMed]
    [Google Scholar]
  61. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77:71–94[PubMed]
    [Google Scholar]
  62. Gey GO, Coffmann WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 1952;12:264–265
    [Google Scholar]
  63. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953;97:695–710 [CrossRef][PubMed]
    [Google Scholar]
  64. Ralph P, Nakoinz I. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J Immunol 1977;119:950–954[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000467
Loading
/content/journal/micro/10.1099/mic.0.000467
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error