1887

Abstract

Alkanes are widespread pollutants found in soil, freshwater and marine environments. () strain SP17 is a marine bacterium able to use many hydrophobic organic compounds, including alkanes, through the production of biofilms that allow their poor solubility to be overcome. This study pointed out that temperature is an environmental factor that strongly affects the biofilm formation and morphology of on the model alkanes, hexadecane and paraffin. We showed that biofilm formation and accumulation of intracytoplasmic inclusions are higher on solid alkanes (hexadecane at 10 °C and paraffin at 10 °C and 30 °C) than on liquid alkane (hexadecane at 30 °C) or soluble substrate (lactate at both temperatures). We also found that produces more extracellular polymeric substances at 30 °C than at 10 °C on alkanes and none on lactate. We observed that bacterial length is significantly higher at 10 °C than at 30 °C on lactate and hexadecane. On paraffin, at 30 °C, the cell morphology is markedly altered by large rounded or irregularly shaped cytoplasmic inclusions. Altogether, the results showed that is able to adapt and use alkanes as a carbon source, even at low temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000466
2017-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/5/669.html?itemId=/content/journal/micro/10.1099/mic.0.000466&mimeType=html&fmt=ahah

References

  1. Scoma A, Yakimov MM, Boon N. Challenging oil bioremediation at deep-sea hydrostatic pressure. Front Microbiol 2016; 7:3 [View Article][PubMed]
    [Google Scholar]
  2. Golyshin PN, Martins dos Santos VA, Kaiser O, Ferrer M, Sabirova YS et al. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 2003; 106:215–220 [View Article][PubMed]
    [Google Scholar]
  3. Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 2007; 18:257–266 [View Article][PubMed]
    [Google Scholar]
  4. Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 1999; 86:421–428 [View Article][PubMed]
    [Google Scholar]
  5. Grimaud R. Biofilm development at interfaces between hydrophobic organic compounds and water. In Timmis KN. (editor) Handbook of Hydrocarbons and Lipid Microbiology Berlin: Springer; 2010 pp. 1491–1499 [CrossRef]
    [Google Scholar]
  6. Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R et al. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Applied Environ Microbiol 1999; 65:2041–2048[PubMed]
    [Google Scholar]
  7. Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP. Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 2001; 147:2537–2543 [View Article][PubMed]
    [Google Scholar]
  8. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 1999; 65:1–2968[PubMed]
    [Google Scholar]
  9. van Hamme JD, Singh A, Ward OP. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 2006; 24:4–620 [CrossRef]
    [Google Scholar]
  10. Heipieper HJ, Cornelissen S, Pepi M. Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons. In Timmis KN. (editor) Handbook of Hydrocarbons and Lipid Microbiology Berlin: Springer; 2010 pp. 1615–1624 [CrossRef]
    [Google Scholar]
  11. Cameotra SS, Singh P. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact 2009; 8:16 [View Article][PubMed]
    [Google Scholar]
  12. Wältermann M, Steinbüchel A. Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 2005; 187:3607–3619 [View Article][PubMed]
    [Google Scholar]
  13. Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium. Extremophiles 2005; 9:461–470 [View Article][PubMed]
    [Google Scholar]
  14. Edwards KJ, Rogers DR, Wirsen CO, Mccollom TM. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha- and gamma-proteobacteria from the deep sea. Appl Environ Microbiol 2003; 69:2906–2913 [View Article][PubMed]
    [Google Scholar]
  15. Handley KM, Lloyd JR. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 2013; 4:6 [View Article][PubMed]
    [Google Scholar]
  16. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006; 56:2653–2656 [View Article][PubMed]
    [Google Scholar]
  17. Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H et al. Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 2005; 9:17–27 [View Article][PubMed]
    [Google Scholar]
  18. Al-Mailem DM, Eliyas M, Khanafer M, Radwan SS. Biofilms constructed for the removal of hydrocarbon pollutants from hypersaline liquids. Extremophiles 2015; 19:189–196 [View Article][PubMed]
    [Google Scholar]
  19. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576 [View Article][PubMed]
    [Google Scholar]
  20. Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R. Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane–water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 2008; 159:137–144 [View Article][PubMed]
    [Google Scholar]
  21. Klein B, Bouriat P, Goulas P, Grimaud R. Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane–water interface. Biotechnol Bioeng 2010; 105:461–468 [View Article][PubMed]
    [Google Scholar]
  22. Vaysse PJ, Prat L, Mangenot S, Cruveiller S, Goulas P et al. Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane–water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Res Microbiol 2009; 160:829–837 [View Article][PubMed]
    [Google Scholar]
  23. Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P et al. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol Ecol 2014; 90:816–831 [View Article][PubMed]
    [Google Scholar]
  24. Vaysse PJ, Sivadon P, Goulas P, Grimaud R. Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane–water interface. Environ Microbiol 2011; 13:737–746 [View Article][PubMed]
    [Google Scholar]
  25. de Oliveira DC, Fernandes Júnior A, Kaneno R, Silva MG, Araújo Júnior JP et al. Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog Dis 2014; 11:478–483 [View Article][PubMed]
    [Google Scholar]
  26. Nesse LL, Sekse C, Berg K, Johannesen KC, Solheim H et al. Potentially pathogenic Escherichia coli can form a biofilm under conditions relevant to the food production chain. Appl Environ Microbiol 2014; 80:2042–2049 [View Article][PubMed]
    [Google Scholar]
  27. Uhlich GA, Chen CY, Cottrell BJ, Nguyen LH. Growth media and temperature effects on biofilm formation by serotype O157:H7 and non-O157 Shiga toxin-producing Escherichia coli. FEMS Microbiol Lett 2014; 354:133–141 [View Article][PubMed]
    [Google Scholar]
  28. Choi KH, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 2006; 1:153–161 [View Article][PubMed]
    [Google Scholar]
  29. Canette A, Branchu P, Grimaud R, Naïtali M. Imaging bacterial cells and biofilms adhering to hydrophobic organic compounds-water interfaces. In McGenity TJ, Timmis KN, Nogales B. (editors) Hydrocarbon and Lipid Microbiology Protocols Springer Protocols Handbooks Heidleberg, Berlin: Springer-Verglag; 2015
    [Google Scholar]
  30. Sanchez-Vizuete P, Le Coq D, Bridier A, Herry JM, Aymerich S et al. Identification of ypqP as a new Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities. Appl Environ Microbiol 2015; 81:109–118 [View Article][PubMed]
    [Google Scholar]
  31. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 2012; 9:690–696 [View Article][PubMed]
    [Google Scholar]
  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682 [View Article][PubMed]
    [Google Scholar]
  33. Ennouri H, D'Abzac P, Hakil F, Branchu P, Naïtali M et al. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 2017; 19:159–173 [View Article][PubMed]
    [Google Scholar]
  34. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 73:3–633 [View Article]
    [Google Scholar]
  35. Abdallah M, Chataigne G, Ferreira-Theret P, Benoliel C, Drider D et al. Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants. Appl Microbiol Biotechnol 2014; 98:2597–2607 [View Article][PubMed]
    [Google Scholar]
  36. Shivaji S, Prakash JS. How do bacteria sense and respond to low temperature?. Arch Microbiol 2010; 192:85–95 [View Article][PubMed]
    [Google Scholar]
  37. Hua F, Wang H. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant. J Appl Microbiol 2012; 112:7–37 [View Article]
    [Google Scholar]
  38. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M. Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 2002; 68:728–737 [View Article][PubMed]
    [Google Scholar]
  39. Husain DR, Goutx M, Acquaviva M, Gilewicz M, Bertrand J-C. The effect of temperature on eicosane substrate uptake modes by marine bacterium Pseudomonas nautica strain 617: relashionship with the biochemical content of cells and supernatants. World J Microbiol Biotechnol 1997; 13:587–590 [CrossRef]
    [Google Scholar]
  40. Alvarez HM, Pucci OH, Steinbüchel A. Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 1997; 47:132–139 [View Article]
    [Google Scholar]
  41. Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y et al. Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 2002; 68:1192–1195 [View Article][PubMed]
    [Google Scholar]
  42. Alvarez HM, Kalscheuer R, Steinbüchel A. Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 2000; 54:218–223 [View Article][PubMed]
    [Google Scholar]
  43. Manilla-Pérez E, Reers C, Baumgart M, Hetzler S, Reichelt R et al. Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J Bacteriol 2010; 192:643–656 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000466
Loading
/content/journal/micro/10.1099/mic.0.000466
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error