1887

Abstract

Azotobacter vinelandii, belonging to the Pseudomonadaceae family, is a free-living bacterium that has been considered to be a good source for the production of bacterial polymers such as alginate. In A. vinelandii the synthesis of this polymer is regulated by the Gac/Rsm post-transcriptional regulatory system, in which the RsmA protein binds to the mRNA of the biosynthetic algD gene, inhibiting translation. In several Pseudomonas spp. the two-component system CbrA/CbrB has been described to control a variety of metabolic and behavioural traits needed for adaptation to changing environmental conditions. In this work, we show that the A. vinelandii CbrA/CbrB two-component system negatively affects alginate synthesis, a function that has not been described in Pseudomonas aeruginosa or any other Pseudomonas species. CbrA/CbrB was found to control the expression of some alginate biosynthetic genes, mainly algD translation. In agreement with this result, the CbrA/CbrB system was necessary for optimal rsmA expression levels. CbrA/CbrB was also required for maximum accumulation of the sigma factor RpoS. This last effect could explain the positive effect of CbrA/CbrB on rsmA expression, as we also showed that one of the promoters driving rsmA transcription was RpoS-dependent. However, although inactivation of rpoS increased alginate production by almost 100 %, a cbrA mutation increased the synthesis of this polymer by up to 500 %, implying the existence of additional CbrA/CbrB regulatory pathways for the control of alginate production. The control exerted by CbrA/CbrB on the expression of the RsmA protein indicates the central role of this system in regulating carbon metabolism in A. vinelandii.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000457
2017-07-12
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/7/1105.html?itemId=/content/journal/micro/10.1099/mic.0.000457&mimeType=html&fmt=ahah

References

  1. Kennedy C, Rudnick P, MacDonald T, Melton T. Genus Azotobacter. In Garrita GM. (editor) Bergey's Manual of Systematic Bacteriology Part Bvol. 2 New York, NY: Springer-Verlag; 2005; pp.384–401
    [Google Scholar]
  2. Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH et al. Modification and its applications. Microb Biotechnol 2013;6:637–650
    [Google Scholar]
  3. Galindo E, Peña C, Núñez C, Segura D, Espín G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 2007;6:7 [CrossRef][PubMed]
    [Google Scholar]
  4. Peña C, Castillo T, García A, Millán M, Segura D. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 2014;7:278–293 [CrossRef][PubMed]
    [Google Scholar]
  5. Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH. Genetics and regulation of bacterial alginate production. Environ Microbiol 2014;16:2997–3011 [CrossRef][PubMed]
    [Google Scholar]
  6. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2011;2:167 [CrossRef][PubMed]
    [Google Scholar]
  7. Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G. The global regulators GacA and ςS form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 2001;183:6787–6793 [CrossRef][PubMed]
    [Google Scholar]
  8. Martínez-Salazar JM, Moreno S, Nájera R, Boucher JC, Espín G et al. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 1996;178:1800–1808 [CrossRef][PubMed]
    [Google Scholar]
  9. Moreno S, Nájera R, Guzmán J, Soberón-Chávez G, Espín G. Role of alternative sigma factor algU in encystment of Azotobacter vinelandii. J Bacteriol 1998;180:2766–2769[PubMed]
    [Google Scholar]
  10. Manzo J, Cocotl-Yañez M, Tzontecomani T, Martínez VM, Bustillos R et al. Post-transcriptional regulation of the alginate biosynthetic gene algD by the Gac/Rsm system in Azotobacter vinelandii. J Mol Microbiol Biotechnol 2011;21:147–159 [CrossRef][PubMed]
    [Google Scholar]
  11. Romeo T, Vakulskas CA, Babitzke P. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 2013;15:313–324 [CrossRef][PubMed]
    [Google Scholar]
  12. Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 1993;175:4744–4755 [CrossRef][PubMed]
    [Google Scholar]
  13. Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol 1995;61:1959–1967[PubMed]
    [Google Scholar]
  14. Hernandez-Eligio A, Moreno S, Castellanos M, Castañeda M, Nuñez C et al. RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology 2012;158:1953–1963 [CrossRef][PubMed]
    [Google Scholar]
  15. Sonnleitner E, Abdou L, Haas D. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2009;106:21866–21871 [CrossRef][PubMed]
    [Google Scholar]
  16. Sonnleitner E, Valentini M, Wenner N, Haichar FZ, Haas D et al. Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa. PLoS One 2012;7:e44637 [CrossRef][PubMed]
    [Google Scholar]
  17. Moreno R, Fonseca P, Rojo F. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol 2012;83:24–40 [CrossRef][PubMed]
    [Google Scholar]
  18. Nishijyo T, Haas D, Itoh Y. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 2001;40:917–931 [CrossRef][PubMed]
    [Google Scholar]
  19. Sonnleitner E, Romeo A, Bläsi U. Small regulatory RNAs in Pseudomonas aeruginosa. RNA Biol 2012;9:364–371 [CrossRef][PubMed]
    [Google Scholar]
  20. Filiatrault MJ, Stodghill PV, Wilson J, Butcher BG, Chen H et al. CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol 2013;10:245–255 [CrossRef][PubMed]
    [Google Scholar]
  21. Moreno R, Hernández-Arranz S, La Rosa R, Yuste L, Madhushani A et al. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ Microbiol 2015;17:105–118 [CrossRef][PubMed]
    [Google Scholar]
  22. Yeung AT, Bains M, Hancock RE. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J Bacteriol 2011;193:918–931 [CrossRef][PubMed]
    [Google Scholar]
  23. Amador CI, Canosa I, Govantes F, Santero E. Lack of CbrB in Pseudomonas putida affects not only amino acids metabolism but also different stress responses and biofilm development. Environ Microbiol 2010;12:1748–1761 [CrossRef][PubMed]
    [Google Scholar]
  24. Larsen B, Haug A. Biosynthesis of alginate. 1. Composition and structure of alginate produced by Azotobacter vinelandii (Lipman). Carbohydr Res 1971;17:287–296[PubMed][CrossRef]
    [Google Scholar]
  25. Quiroz-Rocha E, Moreno R, Hernández-Ortíz A, Fragoso-Jiménez JC, Muriel-Millán LF et al. gluP encoding the glucose transporter in Azotobacter vinelandii is under the control of the CbrA/CbrB-Crc/Hfq system. Sci Rep 2017;7:858[CrossRef]
    [Google Scholar]
  26. Kennedy C, Gamal R, Humphrey R, Ramos J, Brigle K et al. The nifH, nifM and nifN genes of Azotobacter vinelandii: characterisation by Tn5 mutagenesis and isolation from pLAFR1 gene banks. Mol Gen Genet 1986;205:318–325 [CrossRef]
    [Google Scholar]
  27. Núñez C, Peña C, Kloeckner W, Hernández-Eligio A, Bogachev AV et al. Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl Microbiol Biotechnol 2013;97:2503–2512 [CrossRef][PubMed]
    [Google Scholar]
  28. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983;166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  29. Miller JH. Experiments in Molecular Genetics Cold Sping Harbor, NY: Cold Spring Harbor Laboratory Press; 1972
    [Google Scholar]
  30. Ahumada-Manuel CL, Guzmán J, Peña C, Quiroz-Rocha E, Espín G et al. The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii. Appl Microbiol Biotechnol 2017;101:1521–1534 [CrossRef][PubMed]
    [Google Scholar]
  31. Sambrook J, Fritsch EF, Maniatis T. In Press CSHL. (editor) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  32. Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G et al. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 2009;191:4534–4545 [CrossRef][PubMed]
    [Google Scholar]
  33. Fellay R, Frey J, Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 1987;52:147–154 [CrossRef][PubMed]
    [Google Scholar]
  34. Alexeyev MF, Shokolenko IN, Croughan TP. Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 1995;160:63–67 [CrossRef][PubMed]
    [Google Scholar]
  35. Muriel-Millán LF, Moreno S, Romero Y, Bedoya-Pérez LP, Castañeda M et al. The unphosphorylated EIIA(Ntr) protein represses the synthesis of alkylresorcinols in Azotobacter vinelandii. PLoS One 2015;10:e0117184 [CrossRef][PubMed]
    [Google Scholar]
  36. Cocotl-Yañez M, Moreno S, Encarnación S, López-Pliego L, Castañeda M et al. A small heat-shock protein (Hsp20) regulated by RpoS is essential for cyst desiccation resistance in Azotobacter vinelandii. Microbiology 2014;160:479–487 [CrossRef][PubMed]
    [Google Scholar]
  37. Barry T, Geary S, Hannify S, Macgearailt C, Shalloo M et al. Rapid mini-preparations of total RNA from bacteria. Nucleic Acids Res 1992;20:4940 [CrossRef][PubMed]
    [Google Scholar]
  38. Noguez R, Segura D, Moreno S, Hernandez A, Juarez K et al. Enzyme INtr, NPr and IIANtr are involved in regulation of the poly-β-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol 2008;15:244–254 [CrossRef][PubMed]
    [Google Scholar]
  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–275[PubMed]
    [Google Scholar]
  41. Knutson CA, Jeanes A. A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 1968;24:470–481 [CrossRef][PubMed]
    [Google Scholar]
  42. Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans AD et al. -Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 1995;141:1691–1705 [CrossRef][PubMed]
    [Google Scholar]
  43. Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G. Unphosphorylated EIIANtr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol 2017;104: [CrossRef][PubMed]
    [Google Scholar]
  44. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–675 [CrossRef][PubMed]
    [Google Scholar]
  45. Núñez C, León R, Guzmán J, Espín G, Soberón-Chávez G. Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 2000;182:6550–6556 [CrossRef][PubMed]
    [Google Scholar]
  46. Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the σS RpoS subunit of RNA polymerase. Microbiol Mol Biol Rev 2002;66:373–395 [CrossRef][PubMed]
    [Google Scholar]
  47. Weber B, Croxatto A, Chen C, Milton DL. RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT. Microbiology 2008;154:767–780 [CrossRef][PubMed]
    [Google Scholar]
  48. Cocotl-Yañez M, Sampieri A, Moreno S, Núñez C, Castañeda M et al. Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii. Microbiology 2011;157:1685–1693 [CrossRef][PubMed]
    [Google Scholar]
  49. Laub MT, Goulian M. Specificity in two-component signal transduction pathways. Annu Rev Genet 2007;41:121–145 [CrossRef][PubMed]
    [Google Scholar]
  50. Núñez C, Moreno S, Cárdenas L, Soberón-Chávez G, Espín G. Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii. J Bacteriol 2000;182:4829–4835 [CrossRef][PubMed]
    [Google Scholar]
  51. Yakhnin H, Yakhnin AV, Baker CS, Sineva E, Berezin I et al. Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. Mol Microbiol 2011;81:689–704 [CrossRef][PubMed]
    [Google Scholar]
  52. Leng Y, Vakulskas CA, Zere TR, Pickering BS, Watnick PI et al. Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol Microbiol 2016;99:627–639 [CrossRef][PubMed]
    [Google Scholar]
  53. Pannuri A, Vakulskas CA, Zere T, McGibbon LC, Edwards AN et al. Circuitry linking the catabolite repression and Csr global regulatory systems of Escherichia coli. J Bacteriol 2016;198:3000–3015 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000457
Loading
/content/journal/micro/10.1099/mic.0.000457
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error