1887

Abstract

() is an emerging plant pathogen causing sheath brown rot in rice, as well as diseases in other gramineae food crops including maize, sorghum and wheat. possesses two conserved -acyl homoserine lactone (AHL) quorum sensing (QS) systems called PfvI/R and PfsI/R, which are repressed by RsaL and RsaM, respectively. The two systems are not hierarchically organized and are involved in plant virulence. In this study the AHL QS PfsI/R, PfvI/R and RsaM regulons were determined by transcriptomic analysis. The PfsI/R system regulates 98 genes, whereas 26 genes are regulated by the PfvI/R AHL QS system; only two genes are regulated by both systems. RsaM, on the other hand, regulates over 400 genes: 206 are negatively regulated and 260 are positively regulated. More than half of the genes controlled by the PfsI/R system and 65 % by the PfvI/R system are also part of the RsaM regulon; this is due to RsaM being involved in the regulation of both systems. It is concluded that the two QS systems regulate a unique set of genes and that RsaM is a global regulator mediating the expression of different genes through the two QS systems as well as genes independently of QS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000454
2017-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/5/765.html?itemId=/content/journal/micro/10.1099/mic.0.000454&mimeType=html&fmt=ahah

References

  1. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6:214 [CrossRef][PubMed]
    [Google Scholar]
  2. Hofte M, De Vos P. Plant pathogenic pseudomoans species. In Gnanamanickam SS. (editor) Plant-Associated Bacteria Netherlands: Springer; 2006; pp.507–533[CrossRef]
    [Google Scholar]
  3. Duveiller E, Snacken F, Maraite H. First detection of Pseudomonas fuscovaginae on maize and sorghum in Burundi. Plant Disease 1989;73:514–517 [CrossRef]
    [Google Scholar]
  4. Duveiller E, Notteghem JL, Rott P, Snacken F, Maraite H. Bacterial sheath brown rot of rice caused by Pseudomonas fuscovaginae in Malagasy. Trop Pest Manage 1990;36:151–153 [CrossRef]
    [Google Scholar]
  5. Adorada DL, Stodart BJ, Pangga IB, Ash GJ. Implications of bacterial contaminated seed lots and endophytic colonization by Pseudomonas fuscovaginae on rice establishment. Plant Pathol 2015;64:43–50 [CrossRef]
    [Google Scholar]
  6. Bigirimana VP, Hua GK, Nyamangyoku OI, Höfte M. Rice sheath rot: an emerging ubiquitous destructive disease complex. Front Plant Sci 2015;6:1066 [CrossRef][PubMed]
    [Google Scholar]
  7. Ballio A, Bossa F, Camoni L, Di Giorgio D, Flamand MC et al. Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae. FEBS Lett 1996;381:213–216 [CrossRef][PubMed]
    [Google Scholar]
  8. Flamand M-C, Pelsser S, Ewbank E, Maraite H. Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae. Physiol Mol Plant Pathol 1996;48:217–231 [CrossRef]
    [Google Scholar]
  9. Mattiuzzo M, Bertani I, Ferluga S, Cabrio L, Bigirimana J et al. The plant pathogen Pseudomonas fuscovaginae contains two conserved quorum sensing systems involved in virulence and negatively regulated by RsaL and the novel regulator RsaM. Environ Microbiol 2011;13:145–162 [CrossRef][PubMed]
    [Google Scholar]
  10. Patel HK, Matiuzzo M, Bertani I, Bigirimana VP, Ash GJ et al. Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiol 2014;14:274 [CrossRef][PubMed]
    [Google Scholar]
  11. Venturi V, Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 2013;51:17–37 [CrossRef][PubMed]
    [Google Scholar]
  12. Von Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 2003;41:455–482 [CrossRef][PubMed]
    [Google Scholar]
  13. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet 2009;43:197–222 [CrossRef][PubMed]
    [Google Scholar]
  14. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009;12:182–191 [CrossRef][PubMed]
    [Google Scholar]
  15. Kaplan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 1985;163:1210–1214[PubMed]
    [Google Scholar]
  16. Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 2001;35:439–468 [CrossRef][PubMed]
    [Google Scholar]
  17. Bassler BL. Small talk. Cell-to-cell communication in bacteria. Cell 2002;109:421–424[PubMed][CrossRef]
    [Google Scholar]
  18. Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 2004;28:261–289 [CrossRef][PubMed]
    [Google Scholar]
  19. Fuqua C, Greenberg EP. Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 2002;3:685–695 [CrossRef][PubMed]
    [Google Scholar]
  20. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 2001;25:365–404 [CrossRef][PubMed]
    [Google Scholar]
  21. Venturi V, Rampioni G, Pongor S, Leoni L. The virtue of temperance: built-in negative regulators of quorum sensing in Pseudomonas. Mol Microbiol 2011;82:1060–1070 [CrossRef][PubMed]
    [Google Scholar]
  22. Miller JH. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972
    [Google Scholar]
  23. Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000;182:5990–5996 [CrossRef][PubMed]
    [Google Scholar]
  24. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. ColdSpring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  25. Better M, Lewis B, Corbin D, Ditta G, Helinski DR. Structural relationships among Rhizobium meliloti symbiotic promoters. Cell 1983;35:479–485 [CrossRef][PubMed]
    [Google Scholar]
  26. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr et al. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 1997;94:6036–6041 [CrossRef][PubMed]
    [Google Scholar]
  27. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al. Primer3—new capabilities and interfaces. Nucleic Acids Res 2012;40:e115 [CrossRef][PubMed]
    [Google Scholar]
  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  29. Passos da Silva D, Castañeda-Ojeda MP, Moretti C, Buonaurio R, Ramos C et al. Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiology 2014;160:556–566 [CrossRef][PubMed]
    [Google Scholar]
  30. Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 2006;64:391–397 [CrossRef][PubMed]
    [Google Scholar]
  31. Kurihara S, Suzuki H, Oshida M, Benno Y. A novel putrescine importer required for type 1 pili-driven surface motility induced by extracellular putrescine in Escherichia coli K-12. J Biol Chem 2011;286:10185–10192 [CrossRef][PubMed]
    [Google Scholar]
  32. Lozo J, Vukasinovic M, Strahinic I, Topisirovic L. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J Food Prot 2004;67:2727–2734 [CrossRef][PubMed]
    [Google Scholar]
  33. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995;166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  34. Morgenstein RM, Szostek B, Rather PN. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 2010;34:753–763 [CrossRef][PubMed]
    [Google Scholar]
  35. Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD et al. Polyamines are essential for the formation of plague biofilm. J Bacteriol 2006;188:2355–2363 [CrossRef][PubMed]
    [Google Scholar]
  36. Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi. Mol Microbiol 2016;101:823–840 [CrossRef][PubMed]
    [Google Scholar]
  37. Jeong HS, Kim SM, Lim MS, Kim KS, Choi SH. Direct interaction between quorum-sensing regulator SmcR and RNA polymerase is mediated by integration host factor to activate vvpE encoding elastase in Vibrio vulnificus. J Biol Chem 2010;285:9357–9366 [CrossRef][PubMed]
    [Google Scholar]
  38. Avinash VS, Pundle AV, Ramasamy S, Suresh CG. Penicillin acylases revisited: importance beyond their industrial utility. Crit Rev Biotechnol 2016;36:303–316 [CrossRef][PubMed]
    [Google Scholar]
  39. Mukherji R, Varshney NK, Panigrahi P, Suresh CG, Prabhune A. A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzyme Microb Technol 2014;56:1–7 [CrossRef][PubMed]
    [Google Scholar]
  40. Rampioni G, Bertani I, Pillai CR, Venturi V, Zennaro E et al. Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358. Appl Environ Microbiol 2012;78:726–734 [CrossRef][PubMed]
    [Google Scholar]
  41. Rampioni G, Bertani I, Zennaro E, Polticelli F, Venturi V et al. The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter. J Bacteriol 2006;188:815–819 [CrossRef][PubMed]
    [Google Scholar]
  42. Wong CS, Yin WF, Choo YM, Sam CK, Koh CL et al. Coexistence of quorum-quenching and quorum-sensing in tropical marine Pseudomonas aeruginosa strain MW3A. World J Microbiol Biotechnol 2012;28:453–461 [CrossRef][PubMed]
    [Google Scholar]
  43. Rampioni G, Schuster M, Greenberg EP, Zennaro E, Leoni L. Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol Lett 2009;301:210–217 [CrossRef][PubMed]
    [Google Scholar]
  44. Schuster M, Urbanowski ML, Greenberg EP. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci USA 2004;101:15833–15839 [CrossRef][PubMed]
    [Google Scholar]
  45. Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 2007;8:287 [CrossRef][PubMed]
    [Google Scholar]
  46. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003;185:2080–2095 [CrossRef][PubMed]
    [Google Scholar]
  47. Chugani S, Kim BS, Phattarasukol S, Brittnacher MJ, Choi SH et al. Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon. Proc Natl Acad Sci USA 2012;109:E2823E2831 [CrossRef][PubMed]
    [Google Scholar]
  48. Majerczyk C, Brittnacher M, Jacobs M, Armour CD, Radey M et al. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon. J Bacteriol 2014;196:1412–1424 [CrossRef][PubMed]
    [Google Scholar]
  49. Jang MS, Goo E, An JH, Kim J, Hwang I. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae. PLoS One 2014;9:e84831 [CrossRef][PubMed]
    [Google Scholar]
  50. Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M et al. RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 2007;66:1557–1565 [CrossRef][PubMed]
    [Google Scholar]
  51. Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM et al. Global gene expression profiling in Escherichia coli K12. the effects of integration host factor. J Biol Chem 2000;275:29672–29684 [CrossRef][PubMed]
    [Google Scholar]
  52. Hwang DS, Kornberg A. Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 1992;267:23083–23086[PubMed]
    [Google Scholar]
  53. Friedman DI. Integration host factor: a protein for all reasons. Cell 1988;55:545–554 [CrossRef][PubMed]
    [Google Scholar]
  54. Goodman SD, Nicholson SC, Nash HA. Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Proc Natl Acad Sci USA 1992;89:11910–11914 [CrossRef][PubMed]
    [Google Scholar]
  55. Dwyer DJ, Belenky PA, Yang JH, Macdonald IC, Martell JD et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci USA 2014;111:E2100E2109 [CrossRef][PubMed]
    [Google Scholar]
  56. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 2012;336:315–319 [CrossRef][PubMed]
    [Google Scholar]
  57. Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 2008;135:679–690 [CrossRef][PubMed]
    [Google Scholar]
  58. Lobritz MA, Belenky P, Porter CB, Gutierrez A, Yang JH et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci USA 2015;112:8173–8180 [CrossRef][PubMed]
    [Google Scholar]
  59. Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic resistance by gene expression profiles. Nat Commun 2014;5:5792 [CrossRef][PubMed]
    [Google Scholar]
  60. Michalska K, Chhor G, Clancy S, Jedrzejczak R, Babnigg G et al. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold. Febs J 2014;281:4293–4306 [CrossRef][PubMed]
    [Google Scholar]
  61. Maraite H, Weyns J. Pseudomonas syringae pv. aptata and pv. atrofaciens, specific pathovars or members of pv. syringae?. In Rudolph K, Burr TJ, Mansfield JW, Stead D, von Kietzell J et al. (editors) Pseudomonas Syringae Pathovars and Related Pathogens London, UK: Kluwer Academic Publishers; 1997; pp.515–520[CrossRef]
    [Google Scholar]
  62. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997;143:3703–3711 [CrossRef][PubMed]
    [Google Scholar]
  63. Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T. N-Acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 2008;279:124–130 [CrossRef][PubMed]
    [Google Scholar]
  64. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983;166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  65. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1983;1:784–791 [CrossRef]
    [Google Scholar]
  66. Alexeyev MF. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 1999;26:824–828[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000454
Loading
/content/journal/micro/10.1099/mic.0.000454
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error