1887

Abstract

Staphylococcus epidermidis is a leading cause of foreign body-associated infections. This is related to the bacterium's ability to form biofilms on synthetic materials. Bacteria within a biofilm may be exposed to subinhibitory concentrations (sub-MICs) of antibiotics because of an agent's limited penetration into the biofilm core. Here, we investigated the effect of sub-MICs of tigecycline and ciprofloxacin on the expression of biofilm-associated genes, i.e. icaA, altE and sigB, and the biofilm structure of five clinical isolates of S. epidermidis. For most tested isolates, the expression of these genes increased after exposure to 0.25 MIC and 0.5 MIC tigecycline. A slight decrease in icaAmRNA levels was observed only in two isolates in the presence of 0.25 MIC tigecycline. The effect of ciprofloxacin exposure was isolate-dependent. At 0.5 MIC, ciprofloxacin induced an increase of sigB and icaAmRNA levels in three of the five tested isolates. At the same time, expression of the altE gene increased in all isolates (from 1.3-fold to 42-fold, depending on the strain). Confocal laser scanning microscopy analysis indicated that sub-MIC ciprofloxacin decreased biofilm formation, whereas tigecycline stimulated this process. Our data suggest that sub-MIC tigecycline may have bearing on the outcome of infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000453
2017-05-09
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/5/712.html?itemId=/content/journal/micro/10.1099/mic.0.000453&mimeType=html&fmt=ahah

References

  1. Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 1994;19:231–243 [CrossRef][PubMed]
    [Google Scholar]
  2. Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001;39:2151–2156 [CrossRef][PubMed]
    [Google Scholar]
  3. Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA et al. Biofilm formation in medical device-related infection. Int J Artif Organs 2006;29:343–359[PubMed]
    [Google Scholar]
  4. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007;28:1711–1720 [CrossRef][PubMed]
    [Google Scholar]
  5. Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 2012;34:201–214 [CrossRef][PubMed]
    [Google Scholar]
  6. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014;27:870–926 [CrossRef][PubMed]
    [Google Scholar]
  7. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 2003;188:706–718 [CrossRef][PubMed]
    [Google Scholar]
  8. Stevens NT, Greene CM, O'Gara JP, Humphreys H. Biofilm characteristics of Staphylococcus epidermidis isolates associated with device-related meningitis. J Med Microbiol 2009;58:855–862 [CrossRef][PubMed]
    [Google Scholar]
  9. Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 2015;5:14 [CrossRef][PubMed]
    [Google Scholar]
  10. Knobloch JK, Jäger S, Horstkotte MA, Rohde H, Mack D. RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor σB by repression of the negative regulator gene icaR. Infect Immun 2004;72:3838–3848 [CrossRef][PubMed]
    [Google Scholar]
  11. Aybar Y, Ozaras R, Besirli K, Engin E, Karabulut E et al. Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int J Antimicrob Agents 2012;39:338–342 [CrossRef][PubMed]
    [Google Scholar]
  12. Szczuka E, Grabska K, Kaznowski A. In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol 2015;71:184–189 [CrossRef][PubMed]
    [Google Scholar]
  13. Petersen PJ, Labthavikul P, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother 2006;57:573–576 [CrossRef][PubMed]
    [Google Scholar]
  14. Yin LY, Lazzarini L, Li F, Stevens CM, Calhoun JH. Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother 2005;55:995–1002 [CrossRef][PubMed]
    [Google Scholar]
  15. Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus epidermidis and quinolones. Diagn Microbiol Infect Dis 2001;40:79–89 [CrossRef][PubMed]
    [Google Scholar]
  16. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005;41:S120–S126 [CrossRef]
    [Google Scholar]
  17. Smith K, Gould KA, Ramage G, Gemmell CG, Hinds J et al. Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:380–387 [CrossRef][PubMed]
    [Google Scholar]
  18. Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs 2011;34:737–751 [CrossRef][PubMed]
    [Google Scholar]
  19. Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006;9:445–453 [CrossRef][PubMed]
    [Google Scholar]
  20. Joo HS, Chan JL, Cheung GY, Otto M. Subinhibitory concentrations of protein synthesis-inhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulin cytolysins in community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:4942–4944 [CrossRef][PubMed]
    [Google Scholar]
  21. Otto MP, Martin E, Badiou C, Lebrun S, Bes M et al. Effects of subinhibitory concentrations of antibiotics on virulence factor expression by community-acquired methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2013;68:1524–1532 [CrossRef][PubMed]
    [Google Scholar]
  22. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Third Informational Supplement, CLSI document M100-S23 Wayne, PA: 2013
    [Google Scholar]
  23. Wang Q, Sun FJ, Liu Y, Xiong LR, Xie LL et al. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob Agents Chemother 2010;54:2707–2711 [CrossRef][PubMed]
    [Google Scholar]
  24. Gomes F, Teixeira P, Cerca N, Ceri H, Oliveira R. Virulence gene expression by Staphylococcus epidermidis biofilm cells exposed to antibiotics. Microb Drug Resist 2011;17:191–196 [CrossRef][PubMed]
    [Google Scholar]
  25. Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ 2005;29:151–159 [CrossRef][PubMed]
    [Google Scholar]
  26. Qin Z, Yang X, Yang L, Jiang J, Ou Y et al. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol 2007;56:83–93 [CrossRef][PubMed]
    [Google Scholar]
  27. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000;146:2395–2407 [CrossRef][PubMed]
    [Google Scholar]
  28. Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 2000;44:3357–3363 [CrossRef][PubMed]
    [Google Scholar]
  29. Pintens V, Massonet C, Merckx R, Vandecasteele S, Peetermans WE et al. The role of σB in persistence of Staphylococcus epidermidis foreign body infection. Microbiology 2008;154:2827–2836 [CrossRef][PubMed]
    [Google Scholar]
  30. Jäger S, Mack D, Rohde H, Horstkotte MA, Knobloch JK. Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor σB. Appl Environ Microbiol 2005;71:5577–5581 [CrossRef][PubMed]
    [Google Scholar]
  31. Haddadin RN, Saleh S, Al-Adham IS, Buultjens TE, Collier PJ. The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms. J Appl Microbiol 2010;108:1281–1291 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000453
Loading
/content/journal/micro/10.1099/mic.0.000453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error