1887

Abstract

is a leading cause of foreign body-associated infections. This is related to the bacterium's ability to form biofilms on synthetic materials. Bacteria within a biofilm may be exposed to subinhibitory concentrations (sub-MICs) of antibiotics because of an agent's limited penetration into the biofilm core. Here, we investigated the effect of sub-MICs of tigecycline and ciprofloxacin on the expression of biofilm-associated genes, i.e. and and the biofilm structure of five clinical isolates of . For most tested isolates, the expression of these genes increased after exposure to 0.25 MIC and 0.5 MIC tigecycline. A slight decrease in mRNA levels was observed only in two isolates in the presence of 0.25 MIC tigecycline. The effect of ciprofloxacin exposure was isolate-dependent. At 0.5 MIC, ciprofloxacin induced an increase of and mRNA levels in three of the five tested isolates. At the same time, expression of the gene increased in all isolates (from 1.3-fold to 42-fold, depending on the strain). Confocal laser scanning microscopy analysis indicated that sub-MIC ciprofloxacin decreased biofilm formation, whereas tigecycline stimulated this process. Our data suggest that sub-MIC tigecycline may have bearing on the outcome of infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000453
2017-05-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/5/712.html?itemId=/content/journal/micro/10.1099/mic.0.000453&mimeType=html&fmt=ahah

References

  1. Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 1994;19:231–243 [CrossRef][PubMed]
    [Google Scholar]
  2. Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001;39:2151–2156 [CrossRef][PubMed]
    [Google Scholar]
  3. Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA et al. Biofilm formation in medical device-related infection. Int J Artif Organs 2006;29:343–359[PubMed]
    [Google Scholar]
  4. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007;28:1711–1720 [CrossRef][PubMed]
    [Google Scholar]
  5. Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 2012;34:201–214 [CrossRef][PubMed]
    [Google Scholar]
  6. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014;27:870–926 [CrossRef][PubMed]
    [Google Scholar]
  7. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 2003;188:706–718 [CrossRef][PubMed]
    [Google Scholar]
  8. Stevens NT, Greene CM, O'Gara JP, Humphreys H. Biofilm characteristics of Staphylococcus epidermidis isolates associated with device-related meningitis. J Med Microbiol 2009;58:855–862 [CrossRef][PubMed]
    [Google Scholar]
  9. Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 2015;5:14 [CrossRef][PubMed]
    [Google Scholar]
  10. Knobloch JK, Jäger S, Horstkotte MA, Rohde H, Mack D. RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor σB by repression of the negative regulator gene icaR. Infect Immun 2004;72:3838–3848 [CrossRef][PubMed]
    [Google Scholar]
  11. Aybar Y, Ozaras R, Besirli K, Engin E, Karabulut E et al. Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int J Antimicrob Agents 2012;39:338–342 [CrossRef][PubMed]
    [Google Scholar]
  12. Szczuka E, Grabska K, Kaznowski A. In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol 2015;71:184–189 [CrossRef][PubMed]
    [Google Scholar]
  13. Petersen PJ, Labthavikul P, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother 2006;57:573–576 [CrossRef][PubMed]
    [Google Scholar]
  14. Yin LY, Lazzarini L, Li F, Stevens CM, Calhoun JH. Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother 2005;55:995–1002 [CrossRef][PubMed]
    [Google Scholar]
  15. Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus epidermidis and quinolones. Diagn Microbiol Infect Dis 2001;40:79–89 [CrossRef][PubMed]
    [Google Scholar]
  16. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005;41:S120–S126 [CrossRef]
    [Google Scholar]
  17. Smith K, Gould KA, Ramage G, Gemmell CG, Hinds J et al. Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:380–387 [CrossRef][PubMed]
    [Google Scholar]
  18. Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs 2011;34:737–751 [CrossRef][PubMed]
    [Google Scholar]
  19. Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006;9:445–453 [CrossRef][PubMed]
    [Google Scholar]
  20. Joo HS, Chan JL, Cheung GY, Otto M. Subinhibitory concentrations of protein synthesis-inhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulin cytolysins in community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:4942–4944 [CrossRef][PubMed]
    [Google Scholar]
  21. Otto MP, Martin E, Badiou C, Lebrun S, Bes M et al. Effects of subinhibitory concentrations of antibiotics on virulence factor expression by community-acquired methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2013;68:1524–1532 [CrossRef][PubMed]
    [Google Scholar]
  22. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Third Informational Supplement, CLSI document M100-S23 Wayne, PA: 2013
    [Google Scholar]
  23. Wang Q, Sun FJ, Liu Y, Xiong LR, Xie LL et al. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob Agents Chemother 2010;54:2707–2711 [CrossRef][PubMed]
    [Google Scholar]
  24. Gomes F, Teixeira P, Cerca N, Ceri H, Oliveira R. Virulence gene expression by Staphylococcus epidermidis biofilm cells exposed to antibiotics. Microb Drug Resist 2011;17:191–196 [CrossRef][PubMed]
    [Google Scholar]
  25. Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ 2005;29:151–159 [CrossRef][PubMed]
    [Google Scholar]
  26. Qin Z, Yang X, Yang L, Jiang J, Ou Y et al. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol 2007;56:83–93 [CrossRef][PubMed]
    [Google Scholar]
  27. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000;146:2395–2407 [CrossRef][PubMed]
    [Google Scholar]
  28. Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 2000;44:3357–3363 [CrossRef][PubMed]
    [Google Scholar]
  29. Pintens V, Massonet C, Merckx R, Vandecasteele S, Peetermans WE et al. The role of σB in persistence of Staphylococcus epidermidis foreign body infection. Microbiology 2008;154:2827–2836 [CrossRef][PubMed]
    [Google Scholar]
  30. Jäger S, Mack D, Rohde H, Horstkotte MA, Knobloch JK. Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor σB. Appl Environ Microbiol 2005;71:5577–5581 [CrossRef][PubMed]
    [Google Scholar]
  31. Haddadin RN, Saleh S, Al-Adham IS, Buultjens TE, Collier PJ. The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms. J Appl Microbiol 2010;108:1281–1291 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000453
Loading
/content/journal/micro/10.1099/mic.0.000453
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error