1887

Abstract

Xenorhabdus bovienii bacteria have a dual lifestyle: they are mutualistic symbionts to many species of Steinernema nematodes and are pathogens to a wide array of insects. Previous studies have shown that virulence of X. bovienii–Steinernema spp. pairs decreases when the nematodes associate with non-cognate bacterial strains. However, the virulence of the X. bovienii strains alone has not been fully investigated. In this study, we characterized the virulence of nine X. bovienii strains in Galleria mellonella and Spodoptera littoralis and performed a comparative genomic analysis to correlate observed phenotypes with strain genotypes. Two X. bovienii strains were found to be highly virulent against the tested insect hosts, while three strains displayed attenuated insect virulence. Comparative genomic analyses revealed the presence of several clusters present only in virulent strains, including a predicted type VI secretion system (T6SS). We performed intra-species-competition assays, and showed that the virulent T6SS strains generally outcompeted the less virulent T6SS strains. Thus, we speculate that the T6SS in X. bovienii may be another addition to the arsenal of antibacterial mechanisms expressed by these bacteria in an insect, where it could potentially play three key roles: (1) competition against the insect host microbiota; (2) protection of the insect cadaver from necrotrophic microbial competitors; and (3) outcompeting other Xenorhabdus species and/or strains when co-infections occur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000449
2017-04-22
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/4/510.html?itemId=/content/journal/micro/10.1099/mic.0.000449&mimeType=html&fmt=ahah

References

  1. Poinar GO Jr. Nematodes for Biological Control of Insects Boca Raton, FL: CRC Press; 1979
    [Google Scholar]
  2. Gaugler R, Kaya HK. Entomopathogenic Nematodes in Biological Control Boca Raton, FL: CRC Press; 1990
    [Google Scholar]
  3. Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu Rev Entomol 1993;38:181–206 [CrossRef]
    [Google Scholar]
  4. Peters A. The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Sci Technol 1996;6:389–402 [CrossRef]
    [Google Scholar]
  5. Georgis R, Koppenhöfer AM, Lacey LA, Bélair G, Duncan LW et al. Successes and failures in the use of parasitic nematodes for pest control. Biol Control 2006;38:103–123 [CrossRef]
    [Google Scholar]
  6. Dolinski C, Choo HY, Duncan LW. Grower acceptance of entomopathogenic nematodes: case studies on three continents. J Nematol 2012;44:226–235[PubMed]
    [Google Scholar]
  7. Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 2012;44:218–225[PubMed]
    [Google Scholar]
  8. Poinar GO Jr, Grewal PS. History of entomopathogenic nematology. J Nematol 2012;44:153–161[PubMed]
    [Google Scholar]
  9. Shapiro-Ilan DI, Han R, Dolinksi C. Entomopathogenic nematode production and application technology. J Nematol 2012;44:206–217[PubMed]
    [Google Scholar]
  10. Morgan JAW, Kuntzelmann V, Tavernor S, Ousley MA, Winstanley C. Survival of Xenorhabdus nematophilus and Photorhabdus luminescens in water and soil. J Appl Microbiol 1997;83:665–670 [CrossRef]
    [Google Scholar]
  11. Popiel I, Grove DL, Friedman MJ. Infective juvenile formation in the insect parasitic nematode Steinernema feltiae. Parasitology 1989;99:77–81 [CrossRef]
    [Google Scholar]
  12. Snyder H, Stock SP, Kim SK, Flores-Lara Y, Forst S. New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Appl Environ Microbiol 2007;73:5338–5346 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim SK, Flores-Lara Y, Patricia Stock S, Stock SP. Morphology and ultrastructure of the bacterial receptacle in Steinernema nematodes (Nematoda: Steinernematidae). J Invertebr Pathol 2012;110:366–374 [CrossRef][PubMed]
    [Google Scholar]
  14. Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012;15:220–231 [CrossRef][PubMed]
    [Google Scholar]
  15. Castagnola A, Stock SP. Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of Lepidopteran pests. Insects 2014;5:139–166 [CrossRef][PubMed]
    [Google Scholar]
  16. Chapuis E, Arnal A, Ferdy JB. Trade-offs shape the evolution of the vector-borne insect pathogen Xenorhabdus nematophila. Proc Biol Sci 2012;279:2672–2680 [CrossRef][PubMed]
    [Google Scholar]
  17. Akhurst RJ. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 1982;128:3061–3065 [CrossRef][PubMed]
    [Google Scholar]
  18. Chen G, Dunphy GB, Webster JM. Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens of Heterorhabditis megidis. Biol Control 1994;4:157–162[CrossRef]
    [Google Scholar]
  19. Morales-Soto N, Forst SA. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. J Bacteriol 2011;193:3624–3632 [CrossRef][PubMed]
    [Google Scholar]
  20. Boemare NE. Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In Gaugler R. editor Entomopathogenic Nematology Wallingford, UK: CABI Publishing; 2002; pp.35–35–5656
    [Google Scholar]
  21. Poinar GO Jr, Thomas GM. The nature of Achromobacter nematophilus as an insect pathogen. J Invertebr Pathol 1967;9:510–514 [CrossRef]
    [Google Scholar]
  22. Akhurst RJ, Boemare NE. Biology and taxonomy of Xenorhabdus. In Gaugler R, Kaya HK. (editors) Entomopathogenic Nematodes in Biological Control Boca Raton, FL: CRC Press; 1990; pp.75–90
    [Google Scholar]
  23. Akhurst RJ. Xenorhabdus nematophilus subsp. poinarii: its interaction with insect pathogenic nematodes. Syst Appl Microbiol 1986;8:142–147 [CrossRef]
    [Google Scholar]
  24. Bonifassi E, Fischer-Le Saux M, Boemare NE, Lanois A, Laumond C et al. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. J Invertebr Pathol 1999;74:164–172 [CrossRef][PubMed]
    [Google Scholar]
  25. Ansari MA, Tirry L, Moens M. Entomopathogenic nematodes and their symbiotic bacteria for the biological control of Hoplia philanthus (Coleoptera: Scarabaeidae). Biol Control 2003;28:111–117 [CrossRef]
    [Google Scholar]
  26. Ogier JC, Pagès S, Bisch G, Chiapello H, Médigue C et al. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Genome Biol Evol 2014;6:1495–1513 [CrossRef][PubMed]
    [Google Scholar]
  27. Bisch G, Pagès S, McMullen JG, Stock SP, Duvic B et al. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against Lepidopteran insects. J Invertebr Pathol 2015;124:15–22 [CrossRef][PubMed]
    [Google Scholar]
  28. Bisch G, Ogier JC, Médigue C, Rouy Z, Vincent S et al. Comparative genomics between two Xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biol Evol 2016;8:148–160 [CrossRef][PubMed]
    [Google Scholar]
  29. Murfin KE, Lee MM, Klassen JL, Mcdonald BR, Larget B et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. MBio 2015;6:e00076-15 [CrossRef][PubMed]
    [Google Scholar]
  30. Sicard MA, Ferdy JB, Pagès S, Le Brun N, Godelle B et al. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). J Evol Biol 2004;17:985–993 [CrossRef][PubMed]
    [Google Scholar]
  31. Herbert EE, Goodrich-Blair H. Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol 2007;5:634–646 [CrossRef][PubMed]
    [Google Scholar]
  32. Kaya HK, Stock SP. Techniques in insect nematology. In Lacey LA. editor Manual of Techniques in Invertebrate Pathology, 1st ed. San Diego, CA: Academic Press; 1997; pp.281–324[CrossRef]
    [Google Scholar]
  33. Stock SP, Goodrich-Blair H. Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In Lacey LA. editor Manual of Techniques in Invertebrate Pathology, 2nd ed. San Diego, CA: Academic Press; 2012; pp.373–426[CrossRef]
    [Google Scholar]
  34. Akhurst RJ. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 1980;121:303–309
    [Google Scholar]
  35. Xu J, Hurlbert RE. Toxicity of irradiated media for Xenorhabdus spp. Appl Environ Microbiol 1990;56:815–818[PubMed]
    [Google Scholar]
  36. Lennox ES. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1955;1:190–206 [CrossRef][PubMed]
    [Google Scholar]
  37. Bedding RA, Akhurst RJ. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 1975;21:109–110 [CrossRef]
    [Google Scholar]
  38. Bedding RA, Molyneux AS, Akhurst RJ. Heterorhabditis spp., Neoaplectana spp., and Steinernema kraussei: interspecific and intraspecific differences in infectivity for insects. Exp Parasitol 1983;55:249–257 [CrossRef][PubMed]
    [Google Scholar]
  39. Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 2012;70:e4392 [CrossRef][PubMed]
    [Google Scholar]
  40. Poitout S, Buès R. Elevage de plusieurs espèces de lépidoptères (Noctuidae) sur milieu artificiel riche et sur milieu artificiel simplifié. Ann Zool Ecol Anim 1970;2:79–91
    [Google Scholar]
  41. Bucher GE. Potential bacterial pathogens of insects and their characteristics. J Invertebr Pathol 1960;2:172–195
    [Google Scholar]
  42. Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol 1925;18:265–267 [CrossRef]
    [Google Scholar]
  43. Jubelin G, Pagès S, Lanois A, Boyer MH, Gaudriault S et al. Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection. Environ Microbiol 2011;13:1271–1284 [CrossRef][PubMed]
    [Google Scholar]
  44. Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A et al. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One 2011;6:e27909 [CrossRef][PubMed]
    [Google Scholar]
  45. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S et al. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013;41:D636–D647 [CrossRef][PubMed]
    [Google Scholar]
  46. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–3676 [CrossRef][PubMed]
    [Google Scholar]
  47. Ogier JC, Calteau A, Forst S, Goodrich-Blair H, Roche D et al. Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics 2010;11:568 [CrossRef][PubMed]
    [Google Scholar]
  48. Shyntum D, Venter S, Moleleki LN, Toth I, Coutinho TA. Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 2014;15:163 [CrossRef]
    [Google Scholar]
  49. Li P, Kwok AHY, Jiang J, Ran T, Xu D et al. Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS One 2015;10:e0123061 [CrossRef][PubMed]
    [Google Scholar]
  50. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  51. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  52. Martens EC, Heungens K, Goodrich-Blair H. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J Bacteriol 2003;185:3147–3154 [CrossRef][PubMed]
    [Google Scholar]
  53. Teal TK, Lies DP, Wold BJ, Newman DK. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol 2006;72:7324–7330 [CrossRef][PubMed]
    [Google Scholar]
  54. Bao Y, Lies DP, Fu H, Roberts GP. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 1991;109:167–168 [CrossRef][PubMed]
    [Google Scholar]
  55. Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 2011;193:6057–6069 [CrossRef][PubMed]
    [Google Scholar]
  56. Morales-Soto N, Snyder H, Forst S. Interspecies competition in bacteria-nematode mutualism. In White JF Jr, Torres MS. (editors) Defensive Mutualism in Microbial Symbiosis Boca Raton, FL: CRC Press; 2009; pp.117–128
    [Google Scholar]
  57. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  58. Bingle LEH, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008;11:3–8[CrossRef]
    [Google Scholar]
  59. Core Team R 2014; R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org/
  60. Therneau TM 2015; Coxme: mixed effects cox models. R package version 2.2-4. http://CRAN.R-project.org/package=coxme
  61. Therneau TM 2014; A package for survival analysis in S. R package version 2.37-7. http://CRAN.R-project.org/package=survival
  62. Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR et al. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ Microbiol 2012;14:924–939 [CrossRef][PubMed]
    [Google Scholar]
  63. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 2009;10:104 [CrossRef][PubMed]
    [Google Scholar]
  64. Alteri CJ, Mobley HL. The versatile type VI secretion system. Microbiol Spectrum 2016;4:1–26
    [Google Scholar]
  65. Coulthurst SJ. The type VI secretion system–a widespread and versatile cell targeting system. Res Microbiol 2013;164:640–654 [CrossRef][PubMed]
    [Google Scholar]
  66. Brown SA, Palmer KL, Whiteley M. Revisiting the host as a growth medium. Nat Rev Microbiol 2008;6:657–666 [CrossRef][PubMed]
    [Google Scholar]
  67. Abu Kwaik Y, Bumann D. Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell Microbiol 2013;15:882–890 [CrossRef]
    [Google Scholar]
  68. Passalacqua KD, Charbonneau ME, O'Riordan MX. Bacterial metabolism shapes the host-pathogen interface. Microbiol Spectr 2016;4:1–21 [CrossRef][PubMed]
    [Google Scholar]
  69. Singh S, Reese JM, Casanova-Torres AM, Goodrich-Blair H, Forst S. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl Environ Microbiol 2014;80:4277–4285 [CrossRef][PubMed]
    [Google Scholar]
  70. Sicard MA, Tabart J, Boemare NE, Thaler O, Moulia C. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Parasitology 2005;131:687–694 [CrossRef][PubMed]
    [Google Scholar]
  71. Půza V, Mrácek Z. Mixed infection of Galleria mellonella with two entomopathogenic nematode (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. J Invertebr Pathol 2009;102:40–43 [CrossRef][PubMed]
    [Google Scholar]
  72. Půza V, Mrácek Z. Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)?. J Invertebr Pathol 2010;104:1–3 [CrossRef][PubMed]
    [Google Scholar]
  73. Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 2013;14:652–663 [CrossRef][PubMed]
    [Google Scholar]
  74. Coulthurst SJ, Dawson A, Hunter WN, Sargent F. Conserved signal peptide recognition systems across the prokaryotic domains. Biochemistry 2012;51:1678–1686 [CrossRef][PubMed]
    [Google Scholar]
  75. Sudhaus W. Evolution of insect parasitism in rhabditid and diplogastrid nematodes. In Makarov SE, Dimitrijevic RN. (editors) Advances in Arachnology and Development Biology Vienna-Belgrade-Sofia: SASA; 2008; pp.143–161
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000449
Loading
/content/journal/micro/10.1099/mic.0.000449
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error