1887

Abstract

Expression of the major biofilm components of E. coli, curli fimbriae and cellulose, requires the CsgD transcription factor. A complex regulatory network allows environmental control of csgD transcription and biofilm formation. However, most clinical serotype O157 : H7 strains contain prophage insertions in the csgD regulator, mlrA, or mutations in other regulators that restrict csgD expression. These barriers can be circumvented by certain compensating mutations that restore higher csgD expression. One mechanism is via csgD promoter mutations that switch sigma factor utilization. Biofilm-forming variants utilizing RpoD rather than RpoS have been identified in glycerol freezer stocks of the non-biofilm-forming food-borne outbreak strain, ATCC 43894. In this study we used whole genome sequencing and RNA-seq to study genotypic and transcriptomic differences between those strains. In addition to defining the consequences of the csgD promoter switch and identifying new csgD-controlled genes, we discovered a region of genome amplification in our laboratory stock of 43894 (designated 43894OW) that contributed to the regulation of csgD-dependent properties.

Keyword(s): biofilm , CsgD , curli , hnr , O157:H7 and STEC
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000448
2017-04-13
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/4/611.html?itemId=/content/journal/micro/10.1099/mic.0.000448&mimeType=html&fmt=ahah

References

  1. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 2001;39:1452–1463 [CrossRef][PubMed]
    [Google Scholar]
  2. Bokranz W, Wang X, Tschäpe H, Römling U. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 2005;54:1171–1182 [CrossRef][PubMed]
    [Google Scholar]
  3. Gerstel U, Römling U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 2003;154:659–667 [CrossRef][PubMed]
    [Google Scholar]
  4. Gualdi L, Tagliabue L, Landini P. Biofilm formation-gene expression relay system in Escherichia coli: modulation of σs dependent gene expression by the CsgD regulatory protein via σs protein stabilization. J Bacteriol 2007;189:8034–8043 [CrossRef][PubMed]
    [Google Scholar]
  5. Jørgensen MG, Nielsen JS, Boysen A, Franch T, Møller-Jensen J et al. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol Microbiol 2012;84:36–50 [CrossRef][PubMed]
    [Google Scholar]
  6. Ogasawara H, Yamada K, Kori A, Yamamoto K, Ishihama A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 2010;156:2470–2483 [CrossRef][PubMed]
    [Google Scholar]
  7. Ogasawara H, Yamamoto K, Ishihama A. Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. FEMS Microbiol Lett 2010;312:160–168 [CrossRef][PubMed]
    [Google Scholar]
  8. Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N et al. Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 2009;155:1318–1331 [CrossRef][PubMed]
    [Google Scholar]
  9. Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing?. Annu Rev Genet 2010;44:167–188 [CrossRef][PubMed]
    [Google Scholar]
  10. Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N et al. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 2008;22:2434–2446 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee J, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 2007;7:42 [CrossRef][PubMed]
    [Google Scholar]
  12. Bansal T, Englert D, Lee J, Hegde M, Wood TK et al. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun 2007;75:4597–4607 [CrossRef][PubMed]
    [Google Scholar]
  13. Uhlich GA, Chen CY, Cottrell BJ, Hofmann CS, Dudley EG et al. Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157:H7. Microbiology 2013;159:1586–1596 [CrossRef][PubMed]
    [Google Scholar]
  14. Shaikh N, Tarr PI. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J Bacteriol 2003;185:3596–3605 [CrossRef][PubMed]
    [Google Scholar]
  15. Uhlich GA, Chen CY, Cottrell BJ, Nguyen LH. Growth media and temperature effects on biofilm formation by serotype O157:H7 and non-O157 Shiga toxin-producing Escherichia coli. FEMS Microbiol Lett 2014;354:133–141 [CrossRef][PubMed]
    [Google Scholar]
  16. Carter MQ, Parker CT, Louie JW, Huynh S, Fagerquist CK et al. RcsB contributes to the distinct stress fitness among Escherichia coli O157:H7 curli variants of the 1993 hamburger-associated outbreak strains. Appl Environ Microbiol 2012;78:7706–7719 [CrossRef][PubMed]
    [Google Scholar]
  17. Chen C-Y, Nguyen L-HT, Cottrell BJ, Irwin PL, Uhlich GA. Multiple mechanisms responsible for strong Congo-red-binding variants of Escherichia coli O157:H7 strains. Pathog Dis 2016;74::ftv123. [CrossRef]
    [Google Scholar]
  18. Uhlich GA, Cooke PH, Solomon EB. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 2006;72:2564–2572 [CrossRef][PubMed]
    [Google Scholar]
  19. Uhlich GA, Chen CY, Cottrell BJ, Hofmann CS, Yan X et al. Stx1 prophage excision in Escherichia coli strain PA20 confers strong curli and biofilm formation by restoring native mlrA. FEMS Microbiol Lett 2016;363:fnw123 [CrossRef][PubMed]
    [Google Scholar]
  20. Uhlich GA, Keen JE, Elder RO. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl Environ Microbiol 2001;67:2367–2370 [CrossRef][PubMed]
    [Google Scholar]
  21. Uhlich GA, Gunther NW, Bayles DO, Mosier DA. The CsgA and Lpp proteins of an Escherichia coli O157:H7 strain affect HEp-2 cell invasion, motility, and biofilm formation. Infect Immun 2009;77:1543–1552 [CrossRef][PubMed]
    [Google Scholar]
  22. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS et al. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 1983;18:512–520[PubMed]
    [Google Scholar]
  23. Collinson SK, Emödy L, Müller KH, Trust TJ, Kay WW. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 1991;173:4773–4781 [CrossRef][PubMed]
    [Google Scholar]
  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  25. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 2013;41:e108 [CrossRef][PubMed]
    [Google Scholar]
  26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47 [CrossRef][PubMed]
    [Google Scholar]
  27. Chen CY, Hofmann CS, Cottrell BJ, Strobaugh TP, Paoli GC et al. Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS One 2013;8:e84863 [CrossRef][PubMed]
    [Google Scholar]
  28. Steel RGD, Torrie JH. Principles and Procedures of Statistics New York, NY: McGraw-Hill; 1960
    [Google Scholar]
  29. Zhang XS, García-Contreras R, Wood TK. Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA). ISME J 2008;2:615–631 [CrossRef][PubMed]
    [Google Scholar]
  30. Brombacher E, Baratto A, Dorel C, Landini P. Gene expression regulation by the curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J Bacteriol 2006;188:2027–2037 [CrossRef][PubMed]
    [Google Scholar]
  31. Ko M, Park C. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 2000;303:371–382 [CrossRef][PubMed]
    [Google Scholar]
  32. Bielaszewska M, Prager R, Zhang W, Friedrich AW, Mellmann A et al. Chromosomal dynamism in progeny of outbreak-related sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl Environ Microbiol 2006;72:1900–1909 [CrossRef][PubMed]
    [Google Scholar]
  33. Muniesa M, Blanco JE, de Simón M, Serra-Moreno R, Blanch AR et al. Diversity of stx2 converting bacteriophages induced from Shiga-toxin-producing Escherichia coli strains isolated from cattle. Microbiology 2004;150:2959–2971 [CrossRef][PubMed]
    [Google Scholar]
  34. Pratt LA, Silhavy TJ. The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci USA 1996;93:2488–2492 [CrossRef][PubMed]
    [Google Scholar]
  35. Muffler A, Fischer D, Altuvia S, Storz G, Hengge-Aronis R. The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J 1996;15:1333–1339[PubMed]
    [Google Scholar]
  36. Serra DO, Richter AM, Klauck G, Mika F, Hengge R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 2013;4:e00103–13 [CrossRef][PubMed]
    [Google Scholar]
  37. Junker LM, Peters JE, Hay AG. Global analysis of candidate genes important for fitness in a competitive biofilm using DNA-array-based transposon mapping. Microbiology 2006;152:2233–2245 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000448
Loading
/content/journal/micro/10.1099/mic.0.000448
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error