Enhancing ethanol yields through -xylose and -arabinose co-fermentation after construction of a novel high efficient -arabinose-fermenting strain Free

Abstract

Lignocellulose contains two pentose sugars, -arabinose and -xylose, neither of which is naturally fermented by first generation (1G) ethanol-producing yeast. Since these sugars are inaccessible to 1G yeast, a significant percentage of the total carbon in bioethanol production from plant residues, which are used in second generation (2G) ethanol production, remains unused. Recombinant strains capable of fermenting -xylose are available on the market; however, there are few examples of -arabinose-fermenting yeasts, and commercially, there are no strains capable of fermenting both -xylose and -arabinose because of metabolic incompatibilities when both metabolic pathways are expressed in the same cell. To attempt to solve this problem we have tested -xylose and -arabinose co-fermentation. To find efficient alternative -arabinose utilization pathways to the few existing ones, we have used stringent methodology to screen for new genes (metabolic and transporter functions) to facilitate -arabinose fermentation in recombinant yeast. We demonstrate the feasibility of this approach in a successfully constructed yeast strain capable of using -arabinose as the sole carbon source and capable of fully transforming it to ethanol, reaching the maximum theoretical fermentation yield (0.43 g g). We demonstrate that efficient co-fermentation of -xylose and -arabinose is feasible using two different co-cultured strains, and observed no fermentation delays, yield drops or accumulation of undesired byproducts. In this study we have identified a technically efficient strategy to enhance ethanol yields by 10 % in 2G plants in a process based on C5 sugar co-fermentation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000437
2017-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/4/442.html?itemId=/content/journal/micro/10.1099/mic.0.000437&mimeType=html&fmt=ahah

References

  1. Peplow M. Cellulosic ethanol fights for life. Nature 2014; 507:152–153 [View Article][PubMed]
    [Google Scholar]
  2. Valdivia M, Galan JL, Laffarga J, Ramos JL. Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 2016; 9:585–594 [View Article][PubMed]
    [Google Scholar]
  3. Álvarez C, Reyes-Sosa FM, Díez B. Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 2016; 9:149–156 [View Article][PubMed]
    [Google Scholar]
  4. Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SW et al. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 2015; 8:101 [View Article][PubMed]
    [Google Scholar]
  5. Galbe M, Sassner P, Wingren A, Zacchi G. Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 2007; 108:303–327 [View Article][PubMed]
    [Google Scholar]
  6. Ramos JL, Valdivia M, García-Lorente F, Segura A. Benefits and perspectives on the use of biofuels. Microb Biotechnol 2016; 9:436–440 [View Article][PubMed]
    [Google Scholar]
  7. Madhavan A, Srivastava A, Kondo A, Bisaria VS. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 2012; 32:22–48 [View Article][PubMed]
    [Google Scholar]
  8. Young E, Lee SM, Alper H. Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 2010; 3:24 [View Article][PubMed]
    [Google Scholar]
  9. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 2007; 108:47–177
    [Google Scholar]
  10. Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels 2008; 1:16 [View Article][PubMed]
    [Google Scholar]
  11. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 2009; 8:40 [View Article][PubMed]
    [Google Scholar]
  12. Karhumaa K, Wiedemann B, Hahn-Hägerdal B, Boles E, Gorwa-Grauslund MF. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 2006; 5:18 [View Article][PubMed]
    [Google Scholar]
  13. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, Van Maris AJ. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 2009; 75:907–914 [View Article][PubMed]
    [Google Scholar]
  14. Sànchez Nogué V, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 2015; 37:761–772 [View Article][PubMed]
    [Google Scholar]
  15. Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009; 20:300–306 [View Article][PubMed]
    [Google Scholar]
  16. Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 2003; 69:4144–4150 [View Article][PubMed]
    [Google Scholar]
  17. Wisselink HW, Toirkens MJ, Del Rosario Franco Berriel M, Winkler AA, Van Dijken JP et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 2007; 73:4881–4891 [View Article][PubMed]
    [Google Scholar]
  18. Wang C, Shen Y, Zhang Y, Suo F, Hou J et al. Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomed Res Int 2013; 2013:461204 [View Article][PubMed]
    [Google Scholar]
  19. Knoshaug EP, Vidgren V, Magalhães F, Jarvis EE, Franden MA et al. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on l-arabinose and d-xylose. Yeast 2015; 32:615–628 [View Article][PubMed]
    [Google Scholar]
  20. Subtil T, Boles E. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 2011; 4:38 [View Article][PubMed]
    [Google Scholar]
  21. Verho R, Penttilä M, Richard P. Cloning of two genes (LAT1,2) encoding specific L-arabinose transporters of the L-arabinose fermenting yeast Ambrosiozyma monospora. Appl Biochem Biotechnol 2011; 164:604–611 [View Article][PubMed]
    [Google Scholar]
  22. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998; 14:115–132 [View Article][PubMed]
    [Google Scholar]
  23. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009; 6:343–345 [View Article][PubMed]
    [Google Scholar]
  24. Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122:19–27[PubMed]
    [Google Scholar]
  25. Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995; 156:119–122 [View Article]
    [Google Scholar]
  26. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 2006; 103:15611–15616 [View Article][PubMed]
    [Google Scholar]
  27. Boles E, Keller B. Specific arabinose transporter from the yeast Pichia stipitis, and the uses thereof. U. S. Patent no. US8063194 B2 2011
  28. Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY et al. Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 2015; 42:1–20 [View Article][PubMed]
    [Google Scholar]
  29. Long TM, Su YK, Headman J, Higbee A, Willis LB et al. Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 2012; 78:5492–5500 [View Article][PubMed]
    [Google Scholar]
  30. Fiaux J, Cakar ZP, Sonderegger M, Wüthrich K, Szyperski T et al. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2003; 2:170–180 [View Article][PubMed]
    [Google Scholar]
  31. Kötter P, Amore R, Hollenberg CP, Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 1990; 18:493–500 [View Article][PubMed]
    [Google Scholar]
  32. Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 2005; 67:827–837 [View Article][PubMed]
    [Google Scholar]
  33. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005; 22:359–368 [View Article][PubMed]
    [Google Scholar]
  34. Johnston M, Hillier L, Riles L, Albermann K, André B et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 1997; 387:87–90[PubMed] [CrossRef]
    [Google Scholar]
  35. Sakai A, Shimizu Y, Hishinuma F. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 1990; 33:302–306 [View Article][PubMed]
    [Google Scholar]
  36. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H et al. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 2010; 9:32 [View Article][PubMed]
    [Google Scholar]
  37. Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 2010; 9:79 [View Article][PubMed]
    [Google Scholar]
  38. Caspeta L, Castillo T, Nielsen J. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 2015; 3:184 [View Article][PubMed]
    [Google Scholar]
  39. Wooley R, Ruth M, Glassner D, Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 1999; 15:794–803 [View Article][PubMed]
    [Google Scholar]
  40. Garcia Sanchez R, Karhumaa K, Fonseca C, Sànchez Nogué V, Almeida JR et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 2010; 3:13 [View Article][PubMed]
    [Google Scholar]
  41. Bera AK, Sedlak M, Khan A, Ho NW. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol 2010; 87:1803–1811 [View Article][PubMed]
    [Google Scholar]
  42. Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M. Production of ethanol from L-arabinose by containing a fungal L-arabinose pathway. FEMS Yeast Res 2003; 3:185–189 [View Article]
    [Google Scholar]
  43. Ciani M, Comitini F, Mannazzu I, Domizio P. Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 2010; 10:123–133 [View Article][PubMed]
    [Google Scholar]
  44. Lencioni L, Romani C, Gobbi M, Comitini F, Ciani M et al. Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae. Int J Food Microbiol 2016; 234:36–44 [View Article][PubMed]
    [Google Scholar]
  45. Tristezza M, Tufariello M, Capozzi V, Spano G, Mita G et al. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production. Front Microbiol 2016; 7:670 [View Article][PubMed]
    [Google Scholar]
  46. Szambelan K, Nowak J, Czarnecki Z. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 2004; 26:845–848 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000437
Loading
/content/journal/micro/10.1099/mic.0.000437
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed