1887

Abstract

In Entamoeba histolytica, iron modulates virulence and gene expression via unknown regulatory mechanisms. The existence of a posttranscriptional iron regulatory system parallel with the iron-responsive element (IRE)/iron regulatory protein (IRP) system in the protozoan Trichomonas vaginalis has recently been reported. Due to their evolutionary closeness and the importance of iron for growth and virulence in these protozoa, we hypothesized the existence of an IRE/IRP-like mechanism in E. histolytica. To determine the presence of IRE-like elements in some mRNAs from this parasite, we performed in silico analyses of the 5′- and 3′-UTRs of mRNAs encoding virulence factors and cytoskeleton, ribosomal and metabolism proteins. The Zuker mfold software predicted IRE-like secondary structures in 52 of the 135 mRNAs analysed. However, only nine structures shared sequence similarity with the apical loop sequence (CAGUGN) of the previously reported human IRE-ferritin, whereas the GUU/UUG protozoan-specific motif was detected in 23 stem–loop structures. A new motif, AUU/AUUU, was also observed in 23 structures, suggesting the possible existence of an amoeba-specific motif. Additionally, cross-linking and RNA electrophoretic mobility shift assays showed specific RNA–protein interactions, using as a model two amoebic IRE-like elements from iron-regulated mRNAs and HeLa, T. vaginalis and E. histolytica cytoplasmic proteins. Our data suggest the presence of a posttranscriptional iron regulatory IRE/IRP-like mechanism in E. histolytica.

Erratum
This article contains a correction applying to the following content:
Corrigendum: Iron responsive-like elements in the parasite Entamoeba histolytica
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000431
2017-09-04
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/9/1329.html?itemId=/content/journal/micro/10.1099/mic.0.000431&mimeType=html&fmt=ahah

References

  1. Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 2001;33:940–959 [CrossRef][PubMed]
    [Google Scholar]
  2. Testa U. Proteins of Iron Metabolism Boca Raton, FL: CRC Press; 2000
    [Google Scholar]
  3. Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 2004;1012:1–13 [CrossRef][PubMed]
    [Google Scholar]
  4. Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 1997;35:1–19[PubMed][CrossRef]
    [Google Scholar]
  5. Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 2000;54:881–941 [CrossRef][PubMed]
    [Google Scholar]
  6. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003;27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee JW, Helmann JD. Functional specialization within the fur family of metalloregulators. Biometals 2007;20:485–499 [CrossRef][PubMed]
    [Google Scholar]
  8. Henderson BR, Menotti E, Kühn LC. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J Biol Chem 1996;9:4900–4908
    [Google Scholar]
  9. Henderson BR, Menotti E, Bonnard C, Kühn LC. Optimal sequence and structure of iron-responsive elements. Selection of RNA stem–loops with high affinity for iron regulatory factor. J Biol Chem 1994;269:17481–17489[PubMed]
    [Google Scholar]
  10. Ke Y, Wu J, Leibold EA, Walden WE, Theil EC. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation?. J Biol Chem 1998;273:23637–23640 [CrossRef]
    [Google Scholar]
  11. Sierzputowska-Gracz H, Theil EC. 15N NMR and CD studies of the IRE (iron regulatory element in ferritin mRNA with single base substitution in the hairpin loop. Nucleic Acids Symp Ser 1995;33:203–206
    [Google Scholar]
  12. Butt J, Kim HY, Basilion JP, Cohen S, Iwai K et al. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci USA 1996;93:4345–4349 [CrossRef]
    [Google Scholar]
  13. Volz K. The functional duality of iron regulatory protein 1. Curr Opin Struct Biol 2008;18:106–111 [CrossRef][PubMed]
    [Google Scholar]
  14. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell 2004;117:285–297[PubMed][CrossRef]
    [Google Scholar]
  15. Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2006;2:406–414 [CrossRef][PubMed]
    [Google Scholar]
  16. De Domenico I, McVey Ward D, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 2008;9:72–81 [CrossRef][PubMed]
    [Google Scholar]
  17. Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 2008;28:197–213 [CrossRef][PubMed]
    [Google Scholar]
  18. Loyevsky M, Lavaute T, Allerson CR, Stearman R, Kassim OO et al. An IRP-like protein from Plasmodium falciparum binds to a mammalian iron-responsive element. Blood 2001;98:2555–2562 [CrossRef][PubMed]
    [Google Scholar]
  19. Loyevsky M, Mompoint F, Yikilmaz E, Altschul SF, Madden T et al. Expression of a recombinant IRP-like Plasmodium falciparum protein that specifically binds putative plasmodial IREs. Mol Biochem Parasitol 2003;126:231–238 [CrossRef][PubMed]
    [Google Scholar]
  20. Meehan HA, Lundberg RA, Connell GJ. A trypanosomatid protein specifically interacts with a mammalian iron-responsive element. Parasitol Res 2000;86:109–114 [CrossRef][PubMed]
    [Google Scholar]
  21. Solano-González E, Burrola-Barraza E, León-Sicairos C, Avila-González L, Gutiérrez-Escolano L et al. The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS Lett 2007;581:2919–2928 [CrossRef][PubMed]
    [Google Scholar]
  22. Torres-Romero JC, Arroyo R. Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. Infect Genet Evol 2009;9:1065–1074 [CrossRef][PubMed]
    [Google Scholar]
  23. Calla-Choque JS, Figueroa-Angulo EE, Ávila-González L, Arroyo R. α-Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism. Biomed Res Int 2014;2014:1–20 [CrossRef][PubMed]
    [Google Scholar]
  24. Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-binding proteins in Trichomonas vaginalis: atypical multifunctional proteins. Biomolecules 2015;5:3354–3395 [CrossRef][PubMed]
    [Google Scholar]
  25. WHO Amoebiasis, World Health Organization/Panamerica Health Organization Expert Consultation on Amoebiasis. WHO Weekly Epidemiological Record 1997;72:97–100
    [Google Scholar]
  26. Haque R, Huston CD, Hughes M, Houpt E, Petri WA Jr. Amebiasis. N Engl J Med 2003;348:1565–1573 [CrossRef][PubMed]
    [Google Scholar]
  27. Serrano-Luna JJ, Negrete E, Reyes M, De La Garza M. Entamoeba histolytica HM1:IMSS: hemoglobin-degrading neutral cysteine proteases. Exp Parasitol 1998;89:71–77 [CrossRef][PubMed]
    [Google Scholar]
  28. Cruz-Castañeda A, Olivares-Trejo JJ. Ehhmbp45 is a novel hemoglobin-binding protein identified in entamoeba histolytica. FEBS Lett 2008;582:2806–2810 [CrossRef][PubMed]
    [Google Scholar]
  29. Cruz-Castañeda A, Hernández-Sánchez J, Olivares-Trejo JJ. Cloning and identification of a gene coding for a 26-kDa hemoglobin-binding protein from Entamoeba histolytica. Biochimie 2009;91:383–389 [CrossRef][PubMed]
    [Google Scholar]
  30. Reyes-López M, Serrano-Luna JJ, Negrete-Abascal E, León-Sicairos N, Guerrero-Barrera AL et al. Entamoeba histolytica: transferrin binding proteins. Exp Parasitol 2001;99:132–140 [CrossRef][PubMed]
    [Google Scholar]
  31. León-Sicairos N, Reyes-López M, Canizalez-Román A, Bermúdez-Cruz RM, Serrano-Luna J et al. Human hololactoferrin: endocytosis and use as an iron source by the parasite Entamoeba histolytica. Microbiology 2005;151:3859–3871 [CrossRef][PubMed]
    [Google Scholar]
  32. López-Soto F, González-Robles A, Salazar-Villatoro L, León-Sicairos N, Piña-Vázquez C et al. Entamoeba histolytica uses ferritin as an iron source and internalises this protein by means of clathrin-coated vesicles. Int J Parasitol 2009;39:417–426 [CrossRef][PubMed]
    [Google Scholar]
  33. Lee J, Park SJ, Yong TS. Effect of iron on adherence and cytotoxicity of Entamoeba histolytica to CHO cell monolayers. Korean J Parasitol 2008;46:37–40 [CrossRef][PubMed]
    [Google Scholar]
  34. Park SJ, Lee SM, Lee J, Yong TS. Differential gene expression by iron-limitation in Entamoeba histolytica. Mol Biochem Parasitol 2001;114:257–260 [CrossRef][PubMed]
    [Google Scholar]
  35. Mehlotra RK. Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol 1996;22:295–314 [CrossRef][PubMed]
    [Google Scholar]
  36. Ali V, Nozaki T. Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clin Microbiol Rev 2007;20:164–187 [CrossRef][PubMed]
    [Google Scholar]
  37. Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J et al. The genome of the protist parasite Entamoeba histolytica. Nature 2005;433:865–868 [CrossRef][PubMed]
    [Google Scholar]
  38. Wassmann C, Hellberg A, Tannich E, Bruchhaus I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 1999;274:26051–26056 [CrossRef][PubMed]
    [Google Scholar]
  39. Bruchhaus I, Tannich E. Induction of the iron-containing superoxide dismutase in Entamoeba histolytica by a superoxide anion-generating system or by iron chelation. Mol Biochem Parasitol 1994;67:281–288 [CrossRef][PubMed]
    [Google Scholar]
  40. Ackers JP, Mirelman D. Progress in research on Entamoeba histolytica pathogenesis. Curr Opin Microbiol 2006;9:367–373 [CrossRef][PubMed]
    [Google Scholar]
  41. Freitas MA, Fernandes HC, Calixto VC, Martins AS, Silva EF et al. Entamoeba histolytica: cysteine proteinase activity and virulence. Focus on cysteine proteinase 5 expression levels. Exp Parasitol 2009;122:306–309 [CrossRef][PubMed]
    [Google Scholar]
  42. Sánchez-Cruz C, López-Casamichana M, Cruz-Castañeda A, Olivares-Trejo JJ. Transferrin regulates mRNA levels of gene involved in iron utilization in Entamoeba histolytica. Mol Biol 2011;39:4545–4551
    [Google Scholar]
  43. Purdy JE, Pho LT, Mann BJ, Petri WA Jr. Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol Biochem Parasitol 1996;78:91–103 [CrossRef][PubMed]
    [Google Scholar]
  44. López-Camarillo C, Orozco E, Marchat LA. Entamoeba histolytica: comparative genomics of the pre-mRNA 3′ end processing machinery. Exp Parasitol 2005;110:184–190 [CrossRef][PubMed]
    [Google Scholar]
  45. Zamorano A, López-Camarillo C, Orozco E, Weber C, Guillen N et al. In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Comput Biol Chem 2008;32:256–263 [CrossRef][PubMed]
    [Google Scholar]
  46. Zuker M. mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  47. Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999;288:911–940 [CrossRef][PubMed]
    [Google Scholar]
  48. Diamond LS. Axenic cultivation of Entamoeba histolytica: progress and problems. Arch Invest Med 1980;11:47–54
    [Google Scholar]
  49. León-Sicairos N, López-Soto F, Reyes-López M, Godínez-Vargas D, Ordaz-Pichardo C et al. Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin Med Res 2006;4:106–113 [CrossRef][PubMed]
    [Google Scholar]
  50. Diamond LS. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 1957;43:488–490 [CrossRef][PubMed]
    [Google Scholar]
  51. Alvarez-Sánchez ME, Avila-González L, Becerril-García C, Fattel-Facenda LV, Ortega-López J et al. A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog 2000;28:193–202 [CrossRef][PubMed]
    [Google Scholar]
  52. Singh U, Rogers JB, Mann BJ, Petri WA Jr. Transcription initiation is controlled by three core promoter elements in the hgl5 gene of the protozoan parasite Entamoeba histolytica. Proc Natl Acad Sci USA 1997;94:8812–8817 [CrossRef][PubMed]
    [Google Scholar]
  53. López-Camarillo C, López-Rosas I, Ospina-Villa JD, Marchat LA. Deciphering molecular mechanisms of mRNA metabolism in the deep-branching eukaryote entamoeba histolytica. Wiley Interdiscip Rev RNA 2014;5:247–262 [CrossRef][PubMed]
    [Google Scholar]
  54. Serrano-Luna J, Piña-Vázquez C, Reyes-López M, Ortiz-Estrada G, de La Garza M. Proteases from Entamoeba spp. and pathogenic free-living amoebae as virulence factors. J Trop Med 2013;2013:1–32 [CrossRef]
    [Google Scholar]
  55. Hernández-Cuevas NA, Weber C, Hon CC, Guillen N. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism. PLoS One 2014;9:e107102 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000431
Loading
/content/journal/micro/10.1099/mic.0.000431
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error