1887

Abstract

We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of , annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using . Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for eptospiral-urface dhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host –pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during infection.

Keyword(s): adhesin , Leptospira and leptospirosis
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000411
2017-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/1/37.html?itemId=/content/journal/micro/10.1099/mic.0.000411&mimeType=html&fmt=ahah

References

  1. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 2015; 9:e0003898 [View Article][PubMed]
    [Google Scholar]
  2. Adler B, de la Peña Moctezuma A. Leptospira and leptospirosis. Vet Microbiol 2010; 140:287–296 [View Article][PubMed]
    [Google Scholar]
  3. Ko AI, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 2009; 7:736–747 [View Article][PubMed]
    [Google Scholar]
  4. Faine S, Adler B, Bolin C, Perolat P. Leptospira and Leptospirosis, 2nd ed. Melbourne, Australia: Medisci Press; 1999
    [Google Scholar]
  5. Evangelista KV, Coburn J. Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol 2010; 5:1413–1425 [View Article][PubMed]
    [Google Scholar]
  6. Gouveia EL, Metcalfe J, de Carvalho AL, Aires TS, Villasboas-Bisneto JC et al. Leptospirosis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis 2008; 14:505–508 [View Article][PubMed]
    [Google Scholar]
  7. Marotto PC, Nascimento CM, Eluf-Neto J, Marotto MS, Andrade L et al. Acute lung injury in leptospirosis: clinical and laboratory features, outcome, and factors associated with mortality. Clin Infect Dis 1999; 29:1561–1563 [View Article][PubMed]
    [Google Scholar]
  8. Spichler A, Athanazio D, Buzzar M, Castro B, Chapolla E et al. Using death certificate reports to find severe leptospirosis cases, Brazil. Emerg Infect Dis 2007; 13:1559–1561 [View Article][PubMed]
    [Google Scholar]
  9. Toyokawa T, Ohnishi M, Koizumi N. Diagnosis of acute leptospirosis. Expert Rev Anti Infect Ther 2011; 9:111–121 [View Article][PubMed]
    [Google Scholar]
  10. Yang CW. Leptospirosis in Taiwan–an underestimated infectious disease. Chang Gung Med J 2007; 30:109–115[PubMed]
    [Google Scholar]
  11. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 2003; 3:757–771[PubMed] [CrossRef]
    [Google Scholar]
  12. Haake DA, Chao G, Zuerner RL, Barnett JK, Barnett D et al. The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immun 2000; 68:2276–2285[PubMed] [CrossRef]
    [Google Scholar]
  13. de la Peña-Moctezuma A, Bulach DM, Adler B. Genetic differences among the LPS biosynthetic loci of serovars of Leptospira interrogans and Leptospira borgpetersenii. FEMS Immunol Med Microbiol 2001; 31:73–81[PubMed] [CrossRef]
    [Google Scholar]
  14. Dellagostin OA, Grassmann AA, Hartwig DD, Félix SR, da Silva ÉF et al. Recombinant vaccines against leptospirosis. Hum Vaccin 2011; 7:1215–1224 [View Article][PubMed]
    [Google Scholar]
  15. Cullen PA, Haake DA, Adler B. Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol Rev 2004; 28:291–318[PubMed] [CrossRef]
    [Google Scholar]
  16. Delaney MA, Colegrove KM, Spraker TR, Zuerner RL, Galloway RL et al. Isolation of Leptospira from a phocid: acute renal failure and mortality from leptospirosis in rehabilitated northern elephant seals (Mirounga angustirostris), California, USA. J Wildl Dis 2014; 50:621–627 [View Article][PubMed]
    [Google Scholar]
  17. Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013; 1285:115–132 [View Article][PubMed]
    [Google Scholar]
  18. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol 2000; 3:445–450[PubMed] [CrossRef]
    [Google Scholar]
  19. Juncker AS, Willenbrock H, von Heijne G, Brunak S, Nielsen H et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003; 12:1652–1662 [View Article][PubMed]
    [Google Scholar]
  20. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783–795 [View Article][PubMed]
    [Google Scholar]
  21. Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997; 10:1–6[PubMed] [CrossRef]
    [Google Scholar]
  22. Turner LH. Leptospirosis. 3. Maintenance, isolation and demonstration of leptospires. Trans R Soc Trop Med Hyg 1970; 64:623–646[PubMed] [CrossRef]
    [Google Scholar]
  23. Studier FW. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 1991; 219:37–44[PubMed] [CrossRef]
    [Google Scholar]
  24. Bhandari P, Gowrishankar J. An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J Bacteriol 1997; 179:4403–4406[PubMed] [CrossRef]
    [Google Scholar]
  25. Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL et al. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 2004; 186:2164–2172[PubMed] [CrossRef]
    [Google Scholar]
  26. Nascimento AL, Verjovski-Almeida S, Van Sluys MA, Monteiro-Vitorello CB, Camargo LE. Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 2004; 37:459–477[PubMed] [CrossRef]
    [Google Scholar]
  27. Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999; 24:34–36[PubMed] [CrossRef]
    [Google Scholar]
  28. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006; 64:643–651 [View Article][PubMed]
    [Google Scholar]
  29. Yu NY, Wagner JR, Laird MR, Melli G, Rey S et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010; 26:1608–1615 [View Article][PubMed]
    [Google Scholar]
  30. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 2015; 43:D257–D260 [View Article][PubMed]
    [Google Scholar]
  31. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 1998; 95:5857–5864[PubMed] [CrossRef]
    [Google Scholar]
  32. Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V et al. Pfam: clans, web tools and services. Nucleic Acids Res 2006; 34:D247–D251 [View Article][PubMed]
    [Google Scholar]
  33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. clustal w and clustal x version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  34. Ramos CR, Abreu PA, Nascimento AL, Ho PL. A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. Braz J Med Biol Res 2004; 37:1103–1109[PubMed] [CrossRef]
    [Google Scholar]
  35. Wiedemann C, Bellstedt P, Görlach M. CAPITO–a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics 2013; 29:1750–1757 [View Article][PubMed]
    [Google Scholar]
  36. Oliveira TR, Longhi MT, de Morais ZM, Romero EC, Blanco RM et al. Evaluation of leptospiral recombinant antigens MPL17 and MPL21 for serological diagnosis of leptospirosis by enzyme-linked immunosorbent assays. Clin Vaccine Immunol 2008; 15:1715–1722 [View Article][PubMed]
    [Google Scholar]
  37. Domingos RF, Vieira ML, Romero EC, Gonçales AP, de Morais ZM et al. Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions. BMC Microbiol 2012; 12:50 [View Article][PubMed]
    [Google Scholar]
  38. Guerreiro H, Croda J, Flannery B, Mazel M, Matsunaga J et al. Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans. Infect Immun 2001; 69:4958–4968 [View Article][PubMed]
    [Google Scholar]
  39. Teixeira AF, de Morais ZM, Kirchgatter K, Romero EC, Vasconcellos SA et al. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans. PLoS One 2015; 10:e0122762 [View Article][PubMed]
    [Google Scholar]
  40. Lin YP, Greenwood A, Yan W, Nicholson LK, Sharma Y et al. A novel fibronectin type III module binding motif identified on C-terminus of Leptospira immunoglobulin-like protein, LigB. Biochem Biophys Res Commun 2009; 389:57–62 [View Article][PubMed]
    [Google Scholar]
  41. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J et al. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 2006; 34:D257–D260 [View Article][PubMed]
    [Google Scholar]
  42. Braun V, Mahren S, Ogierman M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 2003; 6:173–180[PubMed] [CrossRef]
    [Google Scholar]
  43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  44. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402[PubMed] [CrossRef]
    [Google Scholar]
  45. Dundon WG, Marshall DG, Moráin CA, Smyth CJ. A novel tRNA-associated locus (trl) from Helicobacter pylori is co-transcribed with tRNA(Gly) and reveals genetic diversity. Microbiology 1999; 145:1289–1298 [View Article][PubMed]
    [Google Scholar]
  46. Malmström J, Beck M, Schmidt A, Lange V, Deutsch EW et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009; 460:762–765 [View Article][PubMed]
    [Google Scholar]
  47. Atzingen MV, Barbosa AS, De Brito T, Vasconcellos SA, de Morais ZM et al. Lsa21, a novel leptospiral protein binding adhesive matrix molecules and present during human infection. BMC Microbiol 2008; 8:70 [View Article][PubMed]
    [Google Scholar]
  48. Oliveira R, de Morais ZM, Gonçales AP, Romero EC, Vasconcellos SA et al. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen. PLoS One 2011; 6:e21962 [View Article][PubMed]
    [Google Scholar]
  49. Siqueira GH, Atzingen MV, Alves IJ, de Morais ZM, Vasconcellos SA et al. Characterization of three novel adhesins of Leptospira interrogans. Am J Trop Med Hyg 2013; 89::1103–1116 [View Article][PubMed]
    [Google Scholar]
  50. Vieira ML, Vasconcellos SA, Gonçales AP, de Morais ZM, Nascimento AL. Plasminogen acquisition and activation at the surface of Leptospira species lead to fibronectin degradation. Infect Immun 2009; 77:4092–4101 [View Article][PubMed]
    [Google Scholar]
  51. Vieira ML, Atzingen MV, Oliveira R, Mendes RS, Domingos RF et al. Plasminogen binding proteins and plasmin generation on the surface of Leptospira spp.: the contribution to the bacteria-host interactions. J Biomed Biotechnol 2012; 2012:758513 [View Article][PubMed]
    [Google Scholar]
  52. Oliveira R, Domingos RF, Siqueira GH, Fernandes LG, Souza NM et al. Adhesins of Leptospira interrogans mediate the interaction to fibrinogen and inhibit fibrin clot formation in vitro. PLoS Negl Trop Dis 2013; 7:e2396 [View Article][PubMed]
    [Google Scholar]
  53. Silva LP, Fernandes LGV, Vieira ML, de Souza GO, Heinemann MB et al. Evaluation of two novel leptospiral proteins for their interaction with human host components. Pathog Dis 2016; 74:ftw040 [View Article][PubMed]
    [Google Scholar]
  54. Souza NM, Vieira ML, Alves IJ, de Morais ZM, Vasconcellos SA et al. Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp. Microb Pathog 2012; 53:125–134 [View Article][PubMed]
    [Google Scholar]
  55. Vieira ML, Atzingen MV, Oliveira TR, Oliveira R, Andrade DM et al. In vitro identification of novel plasminogen-binding receptors of the pathogen Leptospira interrogans. PLoS One 2010; 5:e11259 [View Article][PubMed]
    [Google Scholar]
  56. Domingos RF, Fernandes LG, Romero EC, de Morais ZM, Vasconcellos SA et al. Novel Leptospira interrogans protein Lsa32 is expressed during infection and binds laminin and plasminogen. Microbiology 2015; 161:851–864 [View Article][PubMed]
    [Google Scholar]
  57. Choy HA, Kelley MM, Chen TL, Møller AK, Matsunaga J et al. Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 2007; 75:2441–2450 [View Article][PubMed]
    [Google Scholar]
  58. Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect 2012; 18:109–116 [View Article][PubMed]
    [Google Scholar]
  59. Schneider MC, Prosser BE, Caesar JJ, Kugelberg E, Li S et al. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 2009; 458:890–893 [View Article][PubMed]
    [Google Scholar]
  60. Hava DL, Camilli A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 2002; 45:1389–1406[PubMed]
    [Google Scholar]
  61. Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L et al. What makes a bacterial species pathogenic?: Comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403 [View Article][PubMed]
    [Google Scholar]
  62. Fernandes LG, Vieira ML, Kirchgatter K, Alves IJ, de Morais ZM et al. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp. Infect Immun 2012; 80:3679–3692 [View Article][PubMed]
    [Google Scholar]
  63. Oliveira TR, Longhi MT, Goncales AP, de Morais ZM, Vasconcellos SA et al. LipL53, a temperature regulated protein from Leptospira interrogans that binds to extracellular matrix molecules. Microbes Infect 2010; 12:207–217 [CrossRef]
    [Google Scholar]
  64. Vieira ML, Fernandes LG, Domingos RF, Oliveira R, Siqueira GH et al. Leptospiral extracellular matrix adhesins as mediators of pathogen-host interactions. FEMS Microbiol Lett 2014; 352:129–139 [View Article][PubMed]
    [Google Scholar]
  65. Vieira ML, de Morais ZM, Gonçales AP, Romero EC, Vasconcellos SA et al. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV. J Infect 2010; 60:52–64 [View Article][PubMed]
    [Google Scholar]
  66. Vieira ML, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento AL. In vitro evidence for immune evasion activity by human plasmin associated to pathogenic Leptospira interrogans. Microb Pathog 2011; 51:360–365 [View Article][PubMed]
    [Google Scholar]
  67. Siqueira GH, Atzingen MV, de Souza GO, Vasconcellos SA, Nascimento AL. Leptospira interrogans Lsa23 protein recruits plasminogen, factor H and C4BP from normal human serum and mediates C3b and C4b degradation. Microbiology 2016; 162:295–308 [View Article][PubMed]
    [Google Scholar]
  68. Cameron CE. Identification of a Treponema pallidum laminin-binding protein. Infect Immun 2003; 71:2525–2533[PubMed] [CrossRef]
    [Google Scholar]
  69. Saxena RK, Ghosh PK, Gupta R, Davidson WS, Bradoo S et al. Microbial lipases: potential biocatalysts for the future industry. Curr Sci 1999; 77:101–115
    [Google Scholar]
  70. Guo Y, Li J, Hagström E, Ny T. Protective effects of plasmin(ogen) in a mouse model of Staphylococcus aureus-induced arthritis. Arthritis Rheum 2008; 58:764–772 [View Article][PubMed]
    [Google Scholar]
  71. Li Z, Ploplis VA, French EL, Boyle MD. Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. J Infect Dis 1999; 179:907–914 [View Article][PubMed]
    [Google Scholar]
  72. Magalhaes V, Veiga-Malta I, Almeida MR, Baptista M, Ribeiro A et al. Interaction with human plasminogen system turns on proteolytic activity in Streptococcus agalactiae and enhances its virulence in a mouse model. Microbes Infect 2007; 9:1276–1284 [View Article][PubMed]
    [Google Scholar]
  73. Maldonado J, Marina C, Puig J, Maizo Z, Avilan L. A study of cutaneous lesions caused by Leishmania mexicana in plasminogen-deficient mice. Exp Mol Pathol 2006; 80:289–294 [View Article][PubMed]
    [Google Scholar]
  74. Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG et al. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715–2722 [View Article][PubMed]
    [Google Scholar]
  75. Svensson MD, Sjöbring U, Luo F, Bessen DE. Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. Microbiology 2002; 148:3933–3945 [View Article][PubMed]
    [Google Scholar]
  76. Coleman JL, Sellati TJ, Testa JE, Kew RR, Furie MB et al. Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect Immun 1995; 63:2478–2484[PubMed]
    [Google Scholar]
  77. Coleman JL, Gebbia JA, Piesman J, Degen JL, Bugge TH et al. Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 1997; 89:1111–1119[PubMed] [CrossRef]
    [Google Scholar]
  78. Fenno JC, Tamura M, Hannam PM, Wong GW, Chan RA et al. Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect Immun 2000; 68:1884–1892[PubMed] [CrossRef]
    [Google Scholar]
  79. Klempner MS, Noring R, Epstein MP, McCloud B, Rogers RA. Binding of human urokinase type plasminogen activator and plasminogen to Borrelia species. J Infect Dis 1996; 174:97–104[PubMed] [CrossRef]
    [Google Scholar]
  80. Nordstrand A, Shamaei-Tousi A, Ny A, Bergström S. Delayed invasion of the kidney and brain by Borrelia crocidurae in plasminogen-deficient mice. Infect Immun 2001; 69:5832–5839[PubMed] [CrossRef]
    [Google Scholar]
  81. Ponting CP, Marshall JM, Cederholm-Williams SA. Plasminogen: a structural review. Blood Coagul Fibrin 1992; 3:605–614[PubMed] [CrossRef]
    [Google Scholar]
  82. Rouy D, Koschinsky ML, Fleury V, Chapman J, Anglés-Cano E. Apolipoprotein(a) and plasminogen interactions with fibrin: a study with recombinant apolipoprotein(a) and isolated plasminogen fragments. Biochemistry 1992; 31:6333–6339[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000411
Loading
/content/journal/micro/10.1099/mic.0.000411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error