Cross-regulation between two common ancestral response regulators, HprR and CusR, in Free

Abstract

The uncharacterized two-component system YedVW of is involved in stress response to hydrogen peroxide. To identify the HO-sensing role of YedV, a set of single Cys-to-Ala substitution mutants were constructed. One particular mutant with C165A substitution in the membrane domain rendered YedV inactive in HO-dependent transcription of its regulatory target . We then proposed to rename YedVW to HprSR (hydrogen peroxide response sensor/regulator). One unique characteristic of HprR is the overlapping of its recognition sequence with that of the Cu(II)-response two-component system regulator CusR. Towards understanding this unique regulation system, in this study we analysed the interplay between HprR and CusR with respect to transcription of , a regulatory target of HprR, and , a target of CusR. Under low protein concentrations and , two regulators recognize and transcribe both and promoters, albeit at different efficiency, apparently in a collaborative fashion. This is a new type of transcription regulation of the common target genes in response to different external signals. Upon increase in protein concentrations, however, HprR and CusR compete with each other in transcription of the common targets, thereby exhibiting a competitive interplay.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000410
2017-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/243.html?itemId=/content/journal/micro/10.1099/mic.0.000410&mimeType=html&fmt=ahah

References

  1. Mizuno T. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 1997; 4:312–315 [CrossRef]
    [Google Scholar]
  2. Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M et al. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 2002; 46:281–291[PubMed] [CrossRef]
    [Google Scholar]
  3. Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R et al. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 2005; 280:1448–1456 [View Article][PubMed]
    [Google Scholar]
  4. Urano H, Umezawa Y, Yamamoto K, Ishihama A, Ogasawara H. Cooperative regulation of the common target genes between H2O2sensing YedVW and Cu²+-sensing CusSR in Escherichia coli. Microbiology 2015; 161:729–738 [View Article][PubMed]
    [Google Scholar]
  5. Lee Y, Lee DH, Kho CW, Lee AY, Jang M et al. Transthyretin-related proteins function to facilitate the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. FEBS Lett 2005; 579:4769–4774 [View Article][PubMed]
    [Google Scholar]
  6. Hennebry SC, Sait LC, Mantena R, Humphrey TJ, Yang J et al. Salmonella typhimurium's transthyretin-like protein is a host-specific factor important in fecal survival in chickens. PLoS One 2012; 7:e46675 [View Article][PubMed]
    [Google Scholar]
  7. González-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 1995; 270:13681–13687[PubMed] [CrossRef]
    [Google Scholar]
  8. Mogi T, Nakamura H, Anraku Y. Molecular structure of a heme-copper redox center of the Escherichia coli ubiquinol oxidase: evidence and model. J Biochem 1994; 116:471–477[PubMed] [CrossRef]
    [Google Scholar]
  9. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 2000; 97:652–656 [View Article][PubMed]
    [Google Scholar]
  10. Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 2003; 27:197–213[PubMed] [CrossRef]
    [Google Scholar]
  11. Munson GP, Lam DL, Outten FW, O'Halloran TV. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 2000; 182:5864–5871[PubMed] [CrossRef]
    [Google Scholar]
  12. Outten FW, Huffman DL, Hale JA, O'Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 2001; 276:30670–30677 [View Article][PubMed]
    [Google Scholar]
  13. Yamamoto K, Ishihama A. Transcriptional response of Escherichia coli to external copper. Mol Microbiol 2005; 56:215–227 [View Article][PubMed]
    [Google Scholar]
  14. Nies DH, Herzberg M. A fresh view of the cell biology of copper in enterobacteria. Mol Microbiol 2013; 87:447–454 [View Article][PubMed]
    [Google Scholar]
  15. Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 2003; 185:3804–3812[PubMed] [CrossRef]
    [Google Scholar]
  16. Bouzat JL, Hoostal MJ. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria. J Mol Evol 2013; 76:267–279 [CrossRef]
    [Google Scholar]
  17. Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987; 53:85–96[PubMed] [CrossRef]
    [Google Scholar]
  18. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995; 177:4121–4130[PubMed] [CrossRef]
    [Google Scholar]
  19. Ogasawara H, Hasegawa A, Kanda E, Miki T, Yamamoto K et al. Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. J Bacteriol 2007; 189:4791–4799 [View Article][PubMed]
    [Google Scholar]
  20. Ogasawara H, Ohe S, Ishihama A. Role of transcription factor NimR (YeaM) in sensitivity control of Escherichia coli to 2-nitroimidazole. FEMS Microbiol Lett 2015; 362:1–8 [View Article][PubMed]
    [Google Scholar]
  21. Miller JH. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972
    [Google Scholar]
  22. Ogasawara H, Shinohara S, Yamamoto K, Ishihama A. Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli. Microbiology 2012; 158:1482–1492 [View Article][PubMed]
    [Google Scholar]
  23. Yoshida M, Ishihama A, Yamamoto K. Cross talk in promoter recognition between six NarL-family response regulators of Escherichia coli two-component system. Genes Cells 2015; 20:601–612 [View Article][PubMed]
    [Google Scholar]
  24. Kadokura H, Katzen F, Beckwith J. Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 2003; 72:111–135 [View Article][PubMed]
    [Google Scholar]
  25. Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 1998; 279:1718–1721[PubMed] [CrossRef]
    [Google Scholar]
  26. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci USA 2004; 101:13318–13323 [View Article][PubMed]
    [Google Scholar]
  27. Kenney LJ. How important is the phosphatase activity of sensor kinases?. Curr Opin Microbiol 2010; 13:168–176 [View Article][PubMed]
    [Google Scholar]
  28. Wolfe AJ. Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr Opin Microbiol 2010; 13:204–209 [View Article][PubMed]
    [Google Scholar]
  29. Gennaris A, Ezraty B, Henry C, Agrebi R, Vergnes A et al. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature 2015; 528:409–412 [View Article][PubMed]
    [Google Scholar]
  30. Daley DO, Rapp M, Granseth E, Melén K, Drew D et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 2005; 308:1321–1323 [View Article][PubMed]
    [Google Scholar]
  31. Gao R, Stock AM. Probing kinase and phosphatase activities of two-component systems in vivo with concentration-dependent phosphorylation profiling. Proc Natl Acad Sci USA 2013; 110:672–677 [View Article][PubMed]
    [Google Scholar]
  32. Espariz M, Checa SK, Audero ME, Pontel LB, Soncini FC. Dissecting the Salmonella response to copper. Microbiology 2007; 153:2989–2997 [View Article][PubMed]
    [Google Scholar]
  33. Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbial Rev 2010; 34:628–645 [CrossRef]
    [Google Scholar]
  34. Ishihama A. Prokaryotic genome regulation: a revolutionary paradigm. Proc Jpn Acad Ser B Phys Biol Sci 2012; 88:485–508[PubMed] [CrossRef]
    [Google Scholar]
  35. Yamamoto K. The hierarchic network of metal-response transcription factors in Escherichia coli. Biosci Bitechnol Biochem 2014; 78:737–747 [CrossRef]
    [Google Scholar]
  36. Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006; 188:4169–4182 [View Article][PubMed]
    [Google Scholar]
  37. Mizuno T, Tanaka I. Structure of the DNA-binding domain of the OmpR family of response regulators. Mol Microbiol 1997; 24:665–667[PubMed] [CrossRef]
    [Google Scholar]
  38. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR et al. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 2015; 15:141–161 [CrossRef]
    [Google Scholar]
  39. Katzen F, Beckwith J. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD. Proc Natl Acad Sci USA 2003; 100:10471–10476 [View Article][PubMed]
    [Google Scholar]
  40. Aslund F, Zheng M, Beckwith J, Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 1999; 96:6161–6165 [View Article][PubMed]
    [Google Scholar]
  41. Boronat S, Domènech A, Paulo E, Calvo IA, García-Santamarina S et al. Thiol-based H2O2 signalling in microbial systems. Redox Biol 2014; 2:395–399 [View Article][PubMed]
    [Google Scholar]
  42. Ishihama A, Shimada T, Yamazaki Y. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res 2016; 44:2058–2074 [View Article][PubMed]
    [Google Scholar]
  43. Grainger DC, Busby SJ. Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study. Adv Appl Microbiol 2008; 65:93–113 [View Article][PubMed]
    [Google Scholar]
  44. Ogasawara H, Yamada K, Kori A, Yamamoto K, Ishihama A. The E. coli csgD promoter: interplay between five transcription factors. Microbiology 2010; 156:2470–2483 [CrossRef]
    [Google Scholar]
  45. Ogasawara H, Yamamoto K, Ishihama A. Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. FEMS Microbiol Lett 2010; 312:160–168 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000410
Loading
/content/journal/micro/10.1099/mic.0.000410
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed