1887

Abstract

WalRK is the only two-component regulatory system essential for viability in . Despite its importance, the biological role of this system is not well understood. However, previous studies have shown that it has a crucial role in controlling pneumococcal cell division. Considerable efforts have been made to understand how the WalRK system is regulated, but no signal(s) sensed by the WalK histidine kinase has been identified so far. Here, we provide evidence that the serine/threonine protein kinase StkP modulates the activity of WalK through direct protein–protein interaction, suggesting that this interaction is one of the signals sensed by WalK. In most low-G+C content Gram-positive bacteria, WalK orthologues are attached to the cytoplasmic membrane via two transmembrane segments separated by a large extracellular loop believed to function as a sensor domain. In contrast, members of the genus have WalK histidine kinases that are anchored to the cytoplasmic membrane by a single transmembrane segment. It has been a long-standing question whether this segment only serves as a membrane anchor or if it also functions as a signal-sensing domain. Our data strongly support the latter, i.e. that the transmembrane segment senses signals that regulate the activity of WalK.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000404
2017-03-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/3/383.html?itemId=/content/journal/micro/10.1099/mic.0.000404&mimeType=html&fmt=ahah

References

  1. Lange R, Wagner C, de Saizieu A, Flint N, Molnos J et al. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 1999;237:223–234[PubMed][CrossRef]
    [Google Scholar]
  2. Throup JP, Koretke KK, Bryant AP, Ingraham KA, Chalker AF et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 2000;35:566–576[PubMed][CrossRef]
    [Google Scholar]
  3. Dubrac S, Bisicchia P, Devine KM, Msadek T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 2008;70:1307–1322 [CrossRef][PubMed]
    [Google Scholar]
  4. Liu M, Hanks TS, Zhang J, McClure MJ, Siemsen DW et al. Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. Microbiology 2006;152:967–978 [CrossRef][PubMed]
    [Google Scholar]
  5. Wagner C, de Saizieu A, Schönfeld HJ, Kamber M, Lange R et al. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun 2002;70:6121–6128[PubMed][CrossRef]
    [Google Scholar]
  6. Dubrac S, Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 2004;186:1175–1181[PubMed][CrossRef]
    [Google Scholar]
  7. Ng WL, Tsui HC, Winkler ME. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 2005;187:7444–7459 [CrossRef][PubMed]
    [Google Scholar]
  8. Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S et al. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 2007;65:180–200 [CrossRef][PubMed]
    [Google Scholar]
  9. Delauné A, Dubrac S, Blanchet C, Poupel O, Mäder U et al. The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infect Immun 2012;80:3438–3453 [CrossRef][PubMed]
    [Google Scholar]
  10. Ng WL, Robertson GT, Kazmierczak KM, Zhao J, Gilmour R et al. Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 2003;50:1647–1663[PubMed][CrossRef]
    [Google Scholar]
  11. Bartual SG, Straume D, Stamsås GA, Muñoz IG, Alfonso C et al. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nature Commun 2014;5:3842[CrossRef]
    [Google Scholar]
  12. Wang C, Sang J, Wang J, Su M, Downey JS et al. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLoS Biol 2013;11:e1001493 [CrossRef][PubMed]
    [Google Scholar]
  13. Dunin-Horkawicz S, Lupas AN. Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol 2010;397:1156–1174 [CrossRef][PubMed]
    [Google Scholar]
  14. Parkinson JS. Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu Rev Microbiol 2010;64:101–122 [CrossRef][PubMed]
    [Google Scholar]
  15. Stewart V. The HAMP signal-conversion domain: static two-state or dynamic three-state?. Mol Microbiol 2014;91:853–857 [CrossRef][PubMed]
    [Google Scholar]
  16. Henry JT, Crosson S. Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 2011;65:261–286 [CrossRef][PubMed]
    [Google Scholar]
  17. Mascher T. Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. Trends Microbiol 2014;22:559–565 [CrossRef][PubMed]
    [Google Scholar]
  18. Ng WL, Winkler ME. Singular structures and operon organizations of essential two-component systems in species of Streptococcus. Microbiology 2004;150:3096–3098 [CrossRef][PubMed]
    [Google Scholar]
  19. Santelli E, Liddington RC, Mohan MA, Hoch JA, Szurmant H. The crystal structure of Bacillus subtilis YycI reveals a common fold for two members of an unusual class of sensor histidine kinase regulatory proteins. J Bacteriol 2007;189:3290–3295 [CrossRef][PubMed]
    [Google Scholar]
  20. Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 2011;75:192–212 [CrossRef][PubMed]
    [Google Scholar]
  21. Nováková L, Sasková L, Pallová P, Janecek J, Novotná J et al. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J 2005;272:1243–1254 [CrossRef][PubMed]
    [Google Scholar]
  22. Ulrych A, Holečková N, Goldová J, Doubravová L, Benada O et al. Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol 2016;16:247 [CrossRef][PubMed]
    [Google Scholar]
  23. Echenique J, Kadioglu A, Romao S, Andrew PW, Trombe MC. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun 2004;72:2434–2437[PubMed][CrossRef]
    [Google Scholar]
  24. Beilharz K, Nováková L, Fadda D, Branny P, Massidda O et al. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci USA 2012;109:E905E913 [CrossRef][PubMed]
    [Google Scholar]
  25. Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F et al. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol 2012;83:746–758 [CrossRef][PubMed]
    [Google Scholar]
  26. Morlot C, Bayle L, Jacq M, Fleurie A, Tourcier G et al. Interaction of penicillin-binding protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Mol Microbiol 2013;90:88–102 [CrossRef][PubMed]
    [Google Scholar]
  27. Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C et al. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 2014;10:e1004275 [CrossRef][PubMed]
    [Google Scholar]
  28. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev 2016;40:41–56 [CrossRef][PubMed]
    [Google Scholar]
  29. Sun X, Ge F, Xiao CL, Yin XF, Ge R et al. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 2010;9:275–282 [CrossRef][PubMed]
    [Google Scholar]
  30. Falk SP, Weisblum B. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase. FEMS Microbiol Lett 2012;340:19–23[CrossRef]
    [Google Scholar]
  31. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C et al. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 2014;516:259–262 [CrossRef][PubMed]
    [Google Scholar]
  32. Holecková N, Doubravová L, Massidda O, Molle V, Buriánková K et al. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. mBio 2015;6:e01700–14
    [Google Scholar]
  33. Grangeasse C. Rewiring the pneumococcal cell cycle with serine/threonine- and tyrosine-kinases. Trends Microbiol 2016;24:713–724 [CrossRef][PubMed]
    [Google Scholar]
  34. Sasková L, Nováková L, Basler M, Branny P. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol 2007;189:4168–4179 [CrossRef][PubMed]
    [Google Scholar]
  35. Agarwal S, Agarwal S, Pancholi P, Pancholi V. Role of serine/threonine phosphatase (SP-STP) in Streptococcus pyogenes physiology and virulence. J Biol Chem 2011;286:41368–41380 [CrossRef][PubMed]
    [Google Scholar]
  36. Libby EA, Goss LA, Dworkin J. The eukaryotic-like Ser/Thr kinase PrkC regulates the essential WalRK two-component system in Bacillus subtilis. PLoS Genet 2015;11:e1005275 [CrossRef][PubMed]
    [Google Scholar]
  37. Agarwal S, Agarwal S, Pancholi P, Pancholi V. Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence. Infect Immun 2012;80:1361–1372 [CrossRef][PubMed]
    [Google Scholar]
  38. Ulijasz AT, Falk SP, Weisblum B. Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol Microbiol 2009;71:382–390 [CrossRef][PubMed]
    [Google Scholar]
  39. Shah IM, Laaberki MH, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 2008;135:486–496 [CrossRef][PubMed]
    [Google Scholar]
  40. Maestro B, Novaková L, Hesek D, Lee M, Leyva E et al. Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett 2011;585:357–363 [CrossRef][PubMed]
    [Google Scholar]
  41. Mir M, Asong J, Li X, Cardot J, Boons GJ et al. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog 2011;7:e1002182 [CrossRef][PubMed]
    [Google Scholar]
  42. Lacks S, Hotchkiss RD. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta 1960;39:508–518[PubMed][CrossRef]
    [Google Scholar]
  43. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685[PubMed][CrossRef]
    [Google Scholar]
  44. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C et al. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 2010;192:1444–1454 [CrossRef][PubMed]
    [Google Scholar]
  45. Berg KH, Biørnstad TJ, Straume D, Håvarstein LS. Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae. J Bacteriol 2011;193:5207–5215 [CrossRef][PubMed]
    [Google Scholar]
  46. Wayne KJ, Li S, Kazmierczak KM, Tsui HC, Winkler ME. Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol Microbiol 2012;86:645–660 [CrossRef][PubMed]
    [Google Scholar]
  47. Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 1998;95:5752–5756[PubMed][CrossRef]
    [Google Scholar]
  48. Pallová P, Hercík K, Sasková L, Nováková L, Branny P. A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Biochem Biophys Res Commun 2007;355:526–530 [CrossRef][PubMed]
    [Google Scholar]
  49. Gutu AD, Wayne KJ, Sham LT, Winkler ME. Kinetic characterization of the WalRKSpn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain. J Bacteriol 2010;192:2346–2358 [CrossRef][PubMed]
    [Google Scholar]
  50. Huynh TN, Noriega CE, Stewart V. Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. Proc Natl Acad Sci USA 2010;107:21140–21145 [CrossRef][PubMed]
    [Google Scholar]
  51. Huynh TN, Stewart V. Negative control in two-component signal transduction by transmitter phosphatase activity. Mol Microbiol 2011;82:275–286 [CrossRef][PubMed]
    [Google Scholar]
  52. Mohedano ML, Overweg K, de la Fuente A, Reuter M, Altabe S et al. Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 2005;187:2357–2367 [CrossRef][PubMed]
    [Google Scholar]
  53. Szurmant H, Bu L, Brooks CL 3rd, Hoch JA. An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins. Proc Natl Acad Sci USA 2008;105:5891–5896 [CrossRef][PubMed]
    [Google Scholar]
  54. Szurmant H, Mohan MA, Imus PM, Hoch JA. YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 2007;189:3280–3289 [CrossRef][PubMed]
    [Google Scholar]
  55. Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein–protein interaction data?. J Mol Biol 2003;327:919–923[PubMed][CrossRef]
    [Google Scholar]
  56. Johnsborg O, Eldholm V, Bjørnstad ML, Håvarstein LS. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol 2008;69:245–253 [CrossRef][PubMed]
    [Google Scholar]
  57. Johnsborg O, Håvarstein LS. Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae. J Bacteriol 2009;191:5859–5864 [CrossRef][PubMed]
    [Google Scholar]
  58. Berg KH, Stamsås GA, Straume D, Håvarstein LS. Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. J Bacteriol 2013;195:4342–4354 [CrossRef][PubMed]
    [Google Scholar]
  59. Blomqvist T, Steinmoen H, Håvarstein LS. Natural genetic transformation: a novel tool for efficient genetic engineering of the dairy bacterium Streptococcus thermophilus. Appl Environ Microbiol 2006;72:6751–6756 [CrossRef][PubMed]
    [Google Scholar]
  60. Chastanet A, Prudhomme M, Claverys JP, Msadek T. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 2001;183:7295–7307 [CrossRef][PubMed]
    [Google Scholar]
  61. Sung CK, Li H, Claverys JP, Morrison DA. An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 2001;67:5190–5196 [CrossRef][PubMed]
    [Google Scholar]
  62. Viklund H, Bernsel A, Skwark M, Elofsson A. SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 2008;24:2928–2929 [CrossRef][PubMed]
    [Google Scholar]
  63. Nováková L, Bezousková S, Pompach P, Spidlová P, Sasková L et al. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol 2010;192:3629–3638 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000404
Loading
/content/journal/micro/10.1099/mic.0.000404
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error