1887

Abstract

Among the glycoside hydrolases (GHs) classified within the Carbohydrate-Active enZyme (CAZy) database, the α-amylase family GH13 containing ~30 different enzyme specificities and more than 37 000 sequences represents one of the largest GH families. Earlier, based on a characteristic sequence motif in their fifth conserved sequence region, the two closely related subfamilies, the so-called oligo-1,6-glucosidase and neopullulanase subfamilies, were described. Currently, the two subfamilies cover several CAZy-defined GH13 subfamilies because the α-amylase family GH13 has officially been divided into 41 subfamilies. The subfamily GH13_20 also contains, in addition to neopullulanase, cyclomaltodextrinase and maltogenic amylase. These usually possess the N-terminal starch-binding domain (SBD) classified as the carbohydrate-binding module family CBM34. The present study has been focused on the neopullulanase subfamily in an effort to shed some light on the evolution of its modular arrangement. The main goal was to reveal the evolutionary relationships between the catalytic domain representing the enzyme specificity and the non-catalytic SBDs. The studied set based on the CAZy subfamily GH13_20 and family CBM34 was completed by related amylolytic enzymes, such as α-amylases, glycogen debranching enzymes and amylopullulanases. It finally consisted of 74 mostly biochemically characterized GH13 enzymes. The analysed sequences were divided into nine groups based on the presence of various carbohydrate-binding module domains (CBM20 and CBM48 in addition to CBM34). A special unique domain arrangement was revealed in the the α-amylase from sp. AAH-31, in which the three consecutive SBDs (i.e. CBM20, CBM48 and CBM34, in that order) are present at its N-terminus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000390
2016-12-21
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/12/2099.html?itemId=/content/journal/micro/10.1099/mic.0.000390&mimeType=html&fmt=ahah

References

  1. Abe A., Tonozuka T., Sakano Y., Kamitori S.. 2004; Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol335:811–822 [CrossRef][PubMed]
    [Google Scholar]
  2. Abe A., Yoshida H., Tonozuka T., Sakano Y., Kamitori S.. 2005; Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. FEBS J272:6145–6153 [CrossRef][PubMed]
    [Google Scholar]
  3. Ahmad N., Rashid N., Haider M. S., Akram M., Akhtar M.. 2014; Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis. Appl Environ Microbiol80:1108–1115 [CrossRef][PubMed]
    [Google Scholar]
  4. Ali R., Shafiq M. I.. 2015; Sequence, structure, and binding analysis of cyclodextrinase (TK1770) from T. kodakarensis (KOD1) using an in silico approach. Archaea2015:179196 [CrossRef][PubMed]
    [Google Scholar]
  5. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  6. Amodeo G. A., Rudolph M. J., Tong L.. 2007; Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature449:492–495 [CrossRef][PubMed]
    [Google Scholar]
  7. Bai Y., Huang H., Meng K., Shi P., Yang P., Luo H., Luo C., Feng Y., Zhang W., Yao B.. 2012; Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem131:1473–1478 [CrossRef]
    [Google Scholar]
  8. Benson D. A., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W.. 2014; Genbank. Nucleic Acids Res42:D32–D37 [CrossRef][PubMed]
    [Google Scholar]
  9. Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Gallo Cassarino T., Bertoni M. et al. 2014; SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res42:W252–W258 [CrossRef][PubMed]
    [Google Scholar]
  10. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B.. 2009; The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res37:D233–D238 [CrossRef][PubMed]
    [Google Scholar]
  11. Cao H., Gao G., Gu Y., Zhang J., Zhang Y.. 2014; Trp358 is a key residue for the multiple catalytic activities of multifunctional amylase OPMA-N from Bacillus sp. ZW2531-1. Appl Microbiol Biotechnol98:2101–2111 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen J. T., Chen M. C., Chen L. L., Chu W. S.. 2001; Structure and expression of an amylopullulanase gene from Bacillus stearothermophilus TS-23. Biotechnol Appl Biochem33:189–199 [CrossRef][PubMed]
    [Google Scholar]
  13. D'Elia J. N., Salyers A. A.. 1996; Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol178:7173–7179 [CrossRef]
    [Google Scholar]
  14. Deshpande N., Addess K. J., Bluhm W. F., Merino-Ott J. C., Townsend-Merino W., Zhang Q., Knezevich C., Xie L., Chen L. et al. 2005; The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res33:D233–D237 [CrossRef][PubMed]
    [Google Scholar]
  15. Dumbrepatil A. B., Choi J. H., Park J. T., Kim M. J., Kim T. J., Woo E. J., Park K. H.. 2010; Structural features of the Nostoc punctiforme debranching enzyme reveal the basis of its mechanism and substrate specificity. Proteins78:348–356 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  17. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  18. Fritzsche H. B., Schwede T., Schulz G. E.. 2003; Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92. Eur J Biochem270:2332–2341 [CrossRef][PubMed]
    [Google Scholar]
  19. Gabrisko M., Janeček Š.. 2009; Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 alpha-amylase family. FEBS J276:7265–7278 [CrossRef][PubMed]
    [Google Scholar]
  20. Harata K., Haga K., Nakamura A., Aoyagi M., Yamane K.. 1996; X-ray structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011. Comparison of two independent molecules at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr52:1136–1145 [CrossRef][PubMed]
    [Google Scholar]
  21. Hashimoto Y., Yamamoto T., Fujiwara S., Takagi M., Imanaka T.. 2001; Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol183:5050–5057 [CrossRef][PubMed]
    [Google Scholar]
  22. Henrissat B.. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J280:309–316 [CrossRef][PubMed]
    [Google Scholar]
  23. Hondoh H., Kuriki T., Matsuura Y.. 2003; Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol326:177–188 [CrossRef][PubMed]
    [Google Scholar]
  24. Horinouchi S., Fukusumi S., Ohshima T., Beppu T.. 1988; Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur J Biochem176:243–253 [CrossRef][PubMed]
    [Google Scholar]
  25. Imanaka T., Kuriki T.. 1989; Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan. J Bacteriol171:369–374 [CrossRef][PubMed]
    [Google Scholar]
  26. Janeček Š.. 1992; New conserved amino acid region of alpha-amylases in the third loop of their (beta/alpha)8-barrel domains. Biochem J288:1069–1070[PubMed][CrossRef]
    [Google Scholar]
  27. Janeček Š.. 1997; α-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol67:67–97 [CrossRef]
    [Google Scholar]
  28. Janeček Š.. 2002; How many conserved sequence regions are there in the α-amylase family?. Biologia57:29–41
    [Google Scholar]
  29. Janeček Š., Gabriško M.. 2016; Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci73:2707–2725 [CrossRef]
    [Google Scholar]
  30. Janeček Š., Svensson B., Henrissat B.. 1997; Domain evolution in the alpha-amylase family. J Mol Evol45:322–331[PubMed][CrossRef]
    [Google Scholar]
  31. Janeček Š., Svensson B., MacGregor E. A.. 2011; Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol49:429–440 [CrossRef]
    [Google Scholar]
  32. Janeček Š., Svensson B., MacGregor E. A.. 2014; α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci71:1149–1170 [CrossRef]
    [Google Scholar]
  33. Jung T. Y., Li D., Park J. T., Yoon S. M., Tran P. L., Oh B. H., Janeček Š., Park S. G., Woo E. J., Park K. H.. 2012; Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J Biol Chem287:7979–7989 [CrossRef][PubMed]
    [Google Scholar]
  34. Kamitori S., Kondo S., Okuyama K., Yokota T., Shimura Y., Tonozuka T., Sakano Y.. 1999; Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution. J Mol Biol287:921 [CrossRef][PubMed]
    [Google Scholar]
  35. Kamitori S., Abe A., Ohtaki A., Kaji A., Tonozuka T., Sakano Y.. 2002; Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) at 1.6 Å resolution and alpha-amylase 2 (TVAII) at 2.3 Å resolution. J Mol Biol318:443–453 [CrossRef][PubMed]
    [Google Scholar]
  36. Kaulpiboon J., Rimphanitchayakit V., Pongsawasdi P.. 2004; Identification of an alkaline-tolerant cyclodextrin-metabolizing bacterium and characterization of its cyclodextrinase gene. J Basic Microbiol44:374–382 [CrossRef][PubMed]
    [Google Scholar]
  37. Kaulpiboon J., Pongsawasdi P.. 2005; Purification and characterization of cyclodextrinase from Paenibacillus sp. A11. Enzyme Microb Technol36:168–175 [CrossRef]
    [Google Scholar]
  38. Kelley L. A., Sternberg M. J.. 2009; Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc4:363–371 [CrossRef][PubMed]
    [Google Scholar]
  39. Kelly R. M., Leemhuis H., Rozeboom H. J., van Oosterwijk N., Dijkstra B. W., Dijkhuizen L.. 2008; Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J413:517–525 [CrossRef][PubMed]
    [Google Scholar]
  40. Kim I. C., Cha J. H., Kim J. R., Jang S. Y., Seo B. C., Cheong T. K., Lee D. S., Choi Y. D., Park K. H.. 1992; Catalytic properties of the cloned amylase from Bacillus licheniformis. J Biol Chem267:22108–22114[PubMed]
    [Google Scholar]
  41. Kim J. S., Cha S. S., Kim H. J., Kim T. J., Ha N. C., Oh S. T., Cho H. S., Cho M. J., Kim M. J. et al. 1999; Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J Biol Chem274:26279–26286 [CrossRef][PubMed]
    [Google Scholar]
  42. Kim J. W., Kim Y. H., Lee H. S., Yang S. J., Kim Y. W., Lee M. H., Kim J. W., Seo N. S., Park C. S., Park K. H.. 2007; Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim Biophys Acta1774:661–669 [CrossRef][PubMed]
    [Google Scholar]
  43. Koivula T. T., Hemilä H., Pakkanen R., Sibakov M., Palva I.. 1993; Cloning and sequencing of a gene encoding acidophilic amylase from Bacillus acidocaldarius. J Gen Microbiol139:2399–2407 [CrossRef][PubMed]
    [Google Scholar]
  44. Kubota M., Matsuura Y., Sakai S., Katsube Y.. 1991; Molecular structure of Bacillus stearothermophilus cyclodextrin glucanotransferase and analysis of substrate binding site. Denpun Kagaku38:141–146
    [Google Scholar]
  45. Kuriki T., Imanaka T.. 1999; The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng87:557–565 [CrossRef][PubMed]
    [Google Scholar]
  46. Kuriki T., Okada S., Imanaka T.. 1988; New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J Bacteriol170:1554–1559 [CrossRef][PubMed]
    [Google Scholar]
  47. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  48. Lawson C. L., van Montfort R., Strokopytov B., Rozeboom H. J., Kalk K. H., de Vries G. E., Penninga D., Dijkhuizen L., Dijkstra B. W.. 1994; Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol236:590–600 [CrossRef][PubMed]
    [Google Scholar]
  49. Lee S. P., Morikawa M., Takagi M., Imanaka T.. 1994; Cloning of the aapT gene and characterization of its product, alpha-amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl Environ Microbiol60:3764–3773[PubMed]
    [Google Scholar]
  50. Lee H. S., Kim M. S., Cho H. S., Kim J. I., Kim T. J., Choi J. H., Park C., Lee H. S., Oh B. H., Park K. H.. 2002; Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem277:21891–21897 [CrossRef][PubMed]
    [Google Scholar]
  51. Letunic I., Bork P.. 2007; Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics23:127–128 [CrossRef][PubMed]
    [Google Scholar]
  52. Li D., Park J. T., Li X., Kim S., Lee S., Shim J. H., Park S. H., Cha J., Lee B. H. et al. 2010a; Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of 100 °C From the Hyperthermophilic Archaeon Staphylothermus marinus. New Biotechnol27:300–307 [CrossRef]
    [Google Scholar]
  53. Li X., Li D., Yin Y., Park K. H.. 2010b; Characterization of a recombinant amylolytic enzyme of hyperthermophilic archaeon Thermofilum pendens with extremely thermostable maltogenic amylase activity. Appl Microbiol Biotechnol85:1821–1830 [CrossRef]
    [Google Scholar]
  54. Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., Henrissat B.. 2014; The Carbohydrate-Active enZymes database (CAZy) in 2013. Nucleic Acids Res42:D490–D495 [CrossRef][PubMed]
    [Google Scholar]
  55. MacGregor E. A., Janeček Š., Svensson B.. 2001; Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta1546:1–20 [CrossRef][PubMed]
    [Google Scholar]
  56. Machovic M., Janeček Š.. 2006; Starch-binding domains in the post-genome era. Cell Mol Life Sci63:2710–2724 [CrossRef][PubMed]
    [Google Scholar]
  57. Majzlová K., Pukajová Z., Janeček S.. 2013; Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res367:48–57 [CrossRef][PubMed]
    [Google Scholar]
  58. Mania D., Heylen K., van Spanning R. J., Frostegård A.. 2014; The nitrate-ammonifying and nosZ-carrying bacterium Bacillus vireti is a potent source and sink for nitric and nitrous oxide under high nitrate conditions. Environ Microbiol16:3196–3210 [CrossRef][PubMed]
    [Google Scholar]
  59. Matsuura Y., Kusunoki M., Harada W., Kakudo M.. 1984; Structure and possible catalytic residues of Taka-amylase a. J Biochem95:697–702[PubMed]
    [Google Scholar]
  60. Niehaus F., Peters A., Groudieva T., Antranikian G.. 2000; Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiol Lett190:223–229 [CrossRef][PubMed]
    [Google Scholar]
  61. Nisha M., Satyanarayana T.. 2013; Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol97:6279–6292 [CrossRef][PubMed]
    [Google Scholar]
  62. Nisha M., Satyanarayana T.. 2015; The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Microbiol Biotechnol99:5461–5474 [CrossRef][PubMed]
    [Google Scholar]
  63. Nisha M., Satyanarayana T.. 2016; Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl Microbiol Biotechnol100:5661–5679 [CrossRef][PubMed]
    [Google Scholar]
  64. Ohtaki A., Mizuno M., Yoshida H., Tonozuka T., Sakano Y., Kamitori S.. 2006; Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Carbohydr Res341:1041–1046 [CrossRef][PubMed]
    [Google Scholar]
  65. Okuyama M., Saburi W., Mori H., Kimura A.. 2016; α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cell Mol Life Sci73:2727–2751 [CrossRef][PubMed]
    [Google Scholar]
  66. Oslancová A., Janeček Š.. 2002; Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the alpha-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci59:1945–1959 [CrossRef][PubMed]
    [Google Scholar]
  67. Park K. H., Kim T. J., Cheong T. K., Kim J. W., Oh B. H., Svensson B.. 2000; Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim Biophys Acta1478:165–185 [CrossRef][PubMed]
    [Google Scholar]
  68. Park J. T., Song H. N., Jung T. Y., Lee M. H., Park S. G., Woo E. J., Park K. H.. 2013; A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus 1834. Biochim Biophys Acta380:386 [CrossRef]
    [Google Scholar]
  69. Polekhina G., Gupta A., van Denderen B. J., Feil S. C., Kemp B. E., Stapleton D., Parker M. W.. 2005; Structural basis for glycogen recognition by AMP-activated protein kinase. Structure13:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  70. Saburi W., Morimoto N., Mukai A., Kim D. H., Takehana T., Koike S., Matsui H., Mori H.. 2013; A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes. Biosci Biotechnol Biochem77:1867–1873 [CrossRef][PubMed]
    [Google Scholar]
  71. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  72. Shatsky M., Nussinov R., Wolfson H. J.. 2004; A method for simultaneous alignment of multiple protein structures. Proteins56:143–156 [CrossRef][PubMed]
    [Google Scholar]
  73. Stam M. R., Danchin E. G., Rancurel C., Coutinho P. M., Henrissat B.. 2006; Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel19:555–562 [CrossRef][PubMed]
    [Google Scholar]
  74. Takata H., Kuriki T., Okada S., Takesada Y., Iizuka M., Minamiura N., Imanaka T.. 1992; Action of neopullulanase: neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1,4) and α-(1,6)-glucosidic linkages. J Biol Chem267:18447–18452[PubMed]
    [Google Scholar]
  75. Tamamura N., Saburi W., Mukai A., Morimoto N., Takehana T., Koike S., Matsui H., Mori H.. 2014; Enhancement of hydrolytic activity of thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 through optimization of amino acid residues surrounding the substrate binding site. Biochem Eng J86:8–15 [CrossRef]
    [Google Scholar]
  76. Tang K., Utairungsee T., Kanokratana P., Sriprang R., Champreda V., Eurwilaichitr L., Tanapongpipat S.. 2006; Characterization of a novel cyclomaltodextrinase expressed from enviromental DNA isolated from Bor Khleung hot spring Thaoland. FEMS Microbiol Lett206:91–99 [CrossRef]
    [Google Scholar]
  77. Tang K., Kobayashi R. S., Champreda V., Eurwilaichitr L., Tanapongpipat S.. 2008; Isolation and characterization of a novel thermostable neopullulanase-like enzyme from a hot spring in Thailand. Biosci Biotechnol Biochem72:1448–1456 [CrossRef][PubMed]
    [Google Scholar]
  78. Tapio S., Yeh F., Shuman H. A., Boos W.. 1991; The malZ gene of Escherichia coli, a member of the maltose regulon, encodes a maltodextrin glucosidase. J Biol Chem266:19450–19458[PubMed]
    [Google Scholar]
  79. Tonozuka T., Ohtsuka M., Mogi S., Sakai H., Ohta T., Sakano Y.. 1993; A neopullulanase-type alpha-amylase gene from Thermoactinomyces vulgaris R-47. Biosci Biotechnol Biochem57:395–401[PubMed][CrossRef]
    [Google Scholar]
  80. Tonozuka T., Mogi S., Shimura Y., Ibuka A., Sakai H., Matsuzawa H., Sakano Y., Ohta T.. 1995; Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing alpha-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim Biophys Acta1252:35–42 [CrossRef][PubMed]
    [Google Scholar]
  81. Tonozuka T., Yokota T., Ichikawa K., Mizuno M., Kondo S., Nishikawa A., Kamitori S., Sakano Y.. 2002; Crystal structures and substrate specificities of two α-amylases hydrolyzing cyclodextrins and pullulan from Thermoactinomyces vulgaris R-47. Biologia57:71–76
    [Google Scholar]
  82. Turkenburg J. P., Brzozowski A. M., Svendsen A., Borchert T. V., Davies G. J., Wilson K. S.. 2009; Structure of a pullulanase from Bacillus acidopullulyticus. Proteins76:516–519 [CrossRef][PubMed]
    [Google Scholar]
  83. Turner P., Labes A., Fridjonsson O. H., Hreggvidson G. O., Schönheit P., Kristjansson J. K., Holst O., Karlsson E. N.. 2005; Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. J Biosci Bioeng100:380–390 [CrossRef][PubMed]
    [Google Scholar]
  84. UniProt Consortium 2014; Activities at the Universal Protein Resource (Uniprot). Nucleic Acids Res42:D191–D198 [CrossRef][PubMed]
    [Google Scholar]
  85. Vander Kooi C. W., Taylor A. O., Pace R. M., Meekins D. A., Guo H. F., Kim Y., Gentry M. S.. 2010; Structural basis for the glucan phosphatase activity of Starch Excess 4. Proc Natl Acad Sci USA107:15379–15384 [CrossRef][PubMed]
    [Google Scholar]
  86. Worden A. Z., Lee J. H., Mock T., Rouzé P., Simmons M. P., Aerts A. L., Allen A. E., Cuvelier M. L., Derelle E. et al. 2009; Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science324:268–272 [CrossRef][PubMed]
    [Google Scholar]
  87. Wu H., Yu X., Chen L., Wu G.. 2014; Cloning over expression and characterization of a thermostable pullulanase from thermus thermophilus HB27. Protein Expr Purif95:22–27 [CrossRef]
    [Google Scholar]
  88. Yang S. J., Min B. C., Kim Y. W., Jang S. M., Lee B. H., Park K. H.. 2007; Changes in the catalytic properties of Pyrococcus furiosus thermostable amylase by mutagenesis of the substrate binding sites. Appl Environ Microbiol73:5607–5612 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000390
Loading
/content/journal/micro/10.1099/mic.0.000390
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error