1887

Abstract

Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000386
2016-12-21
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/12/2075.html?itemId=/content/journal/micro/10.1099/mic.0.000386&mimeType=html&fmt=ahah

References

  1. Abdel-Mageed W. M., Milne B. F., Wagner M., Schumacher M., Sandor P., Pathom-aree W., Goodfellow M., Bull A. T., Horikoshi K. et al.( 2010;). Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. . Org Biomol Chem8:2352–2362. [CrossRef][PubMed]
    [Google Scholar]
  2. Bachmann B. O., Van Lanen S. G., Baltz R. H..( 2014;). Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?. J Ind Microbiol Biotechnol41:175–184. [CrossRef][PubMed]
    [Google Scholar]
  3. Baltz R. H..( 2006;). Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration?. J Ind Microbiol Biotechnol33:507–513. [CrossRef][PubMed]
    [Google Scholar]
  4. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al.( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol19:455–477. [CrossRef][PubMed]
    [Google Scholar]
  5. Bastian M., Heymann S., Jacomy M..( 2009;). Gephi: an open source software for exploring and manipulating networks. . In Third International AAAI Conference on Weblogs and Social Media. San Jose McEnery Convention Center.
    [Google Scholar]
  6. Bennur T., Ravi Kumar A., Zinjarde S. S., Javdekar V..( 2016;). Nocardiopsis species: a potential source of bioactive compounds. . J Appl Microbiol120:1–16. [CrossRef][PubMed]
    [Google Scholar]
  7. Bentley S. D., Chater K. F., Cerdeño-Tárraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H. et al.( 2002;). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). . Nature417:141–147. [CrossRef][PubMed]
    [Google Scholar]
  8. Bérdy J..( 2005;). Bioactive microbial metabolites. . J Antibiot58:1–26. [CrossRef][PubMed]
    [Google Scholar]
  9. Bérdy J..( 2012;). Thoughts and facts about antibiotics: where we are now and where we are heading. . J Antibiot65:441. [CrossRef][PubMed]
    [Google Scholar]
  10. Brader G., Compant S., Mitter B., Trognitz F., Sessitsch A..( 2014;). Metabolic potential of endophytic bacteria. . Curr Opin Biotechnol27:30–37. [CrossRef][PubMed]
    [Google Scholar]
  11. Cane D. E., Ikeda H..( 2012;). Exploration and mining of the bacterial terpenome. . Acc Chem Res45:463–472. [CrossRef][PubMed]
    [Google Scholar]
  12. Capella-Gutiérrez S., Silla-Martínez J. M., Gabaldón T..( 2009;). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. . Bioinformatics25:1972–1973. [CrossRef][PubMed]
    [Google Scholar]
  13. Choi S.-S., Kim H.-J., Lee H.-S., Kim P., Kim E.-S..( 2015;). Genome mining of rare actinomycetes and cryptic pathway awakening. . Process Biochem50:1184–1193. [CrossRef]
    [Google Scholar]
  14. Chávez R., Fierro F., García-Rico R. O., Vaca I..( 2015;). Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. . Front Microbiol6:903. [CrossRef][PubMed]
    [Google Scholar]
  15. Cimermancic P., Medema M. H., Claesen J., Kurita K., Wieland Brown L. C., Mavrommatis K., Pati A., Godfrey P. A., Koehrsen M. et al.( 2014;). Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. . Cell158:412–421. [CrossRef][PubMed]
    [Google Scholar]
  16. Doroghazi J. R., Metcalf W. W..( 2013;). Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. . BMC Genomics14:611. [CrossRef]
    [Google Scholar]
  17. Doroghazi J. R., Albright J. C., Goering A. W., Ju K. S., Haines R. R., Tchalukov K. A., Labeda D. P., Kelleher N. L., Metcalf W. W..( 2014;). A roadmap for natural product discovery based on large-scale genomics and metabolomics. . Nat Chem Biol10:963–968. [CrossRef][PubMed]
    [Google Scholar]
  18. Eltamany E. E., Abdelmohsen U. R., Ibrahim A. K., Hassanean H. A., Hentschel U., Ahmed S. A..( 2014;). New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. . Bioorg Med Chem Lett24:4939–4942. [CrossRef][PubMed]
    [Google Scholar]
  19. Eustáquio A. S., Nam S.-J., Penn K., Lechner A., Wilson M. C., Fenical W., Jensen P. R., Moore B. S..( 2011;). The discovery of Salinosporamide K from the marine bacterium Salinispora pacifica by genome mining gives insight into pathway evolution. . ChemBioChem12:61–64. [CrossRef]
    [Google Scholar]
  20. Fenical W., Jensen P. R..( 2006;). Developing a new resource for drug discovery: marine actinomycete bacteria. . Nat Chem Biol2:666–673. [CrossRef][PubMed]
    [Google Scholar]
  21. Gomez-Escribano J., Alt S., Bibb M..( 2016;). Next generation sequencing of Actinobacteria for the discovery of novel natural products. . Mar Drugs14:78. [CrossRef]
    [Google Scholar]
  22. Gontang E. A., Fenical W., Jensen P. R..( 2007;). Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. . Appl Environ Microbiol73:3272–3282. [CrossRef][PubMed]
    [Google Scholar]
  23. Gontang E. A., Gaudêncio S. P., Fenical W., Jensen P. R..( 2010;). Sequence-based analysis of secondary-metabolite biosynthesis in marine Actinobacteria. . Appl Environ Microbiol76:2487–2499. [CrossRef][PubMed]
    [Google Scholar]
  24. Hadjithomas M., Chen I. M., Chu K., Ratner A., Palaniappan K., Szeto E., Huang J., Reddy T. B., Cimermančič P. et al.( 2015;). IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. . MBio6:e00932-15. [CrossRef][PubMed]
    [Google Scholar]
  25. Hu Y..( 2006;). Efficient, high-quality force-directed graph drawing. . Mathematica J10:37–71.
    [Google Scholar]
  26. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S..( 2003;). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. . Nat Biotechnol21:526–531. [CrossRef][PubMed]
    [Google Scholar]
  27. Jensen P. R., Gontang E., Mafnas C., Mincer T. J., Fenical W..( 2005;). Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. . Environ Microbiol7:1039–1048. [CrossRef][PubMed]
    [Google Scholar]
  28. Jensen P. R., Chavarria K. L., Fenical W., Moore B. S., Ziemert N..( 2014;). Challenges and triumphs to genomics-based natural product discovery. . J Ind Microbiol Biotechnol41:203–209. [CrossRef][PubMed]
    [Google Scholar]
  29. Jensen P. R., Moore B. S., Fenical W..( 2015;). The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. . Nat Prod Rep32:738–751. [CrossRef][PubMed]
    [Google Scholar]
  30. Jost L..( 2006;). Entropy and diversity. . Oikos113:363–375. [CrossRef]
    [Google Scholar]
  31. Katoh K., Kuma K.-i., Toh H., Miyata T..( 2005;). mafft version 5: improvement in accuracy of multiple sequence alignment. . Nucleic Acids Res33:511–518. [CrossRef]
    [Google Scholar]
  32. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M. A..( 2009;). Circos: an information aesthetic for comparative genomics. . Genome Res19:1639–1645. [CrossRef]
    [Google Scholar]
  33. Land M. L., Hyatt D., Jun S. R., Kora G. H., Hauser L. J., Lukjancenko O., Ussery D. W..( 2014;). Quality scores for 32,000 genomes. . Stand Genomic Sci9:20. [CrossRef][PubMed]
    [Google Scholar]
  34. Lazzarini A., Cavaletti L., Toppo G., Marinelli F..( 2001;). Rare genera of actinomycetes as potential producers of new antibiotics. . Antonie Van Leeuwenhoek79:399–405.
    [Google Scholar]
  35. Letunic I., Bork P..( 2016;). Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. . Nucleic Acids Res44:W242–W245. [CrossRef][PubMed]
    [Google Scholar]
  36. Lin K., Zhu L., Zhang D. Y..( 2006;). An initial strategy for comparing proteins at the domain architecture level. . Bioinformatics22:2081–2086. [CrossRef][PubMed]
    [Google Scholar]
  37. Manivasagan P., Venkatesan J., Sivakumar K., Kim S. K..( 2014;). Pharmaceutically active secondary metabolites of marine actinobacteria. . Microbiol Res169:262–278. [CrossRef][PubMed]
    [Google Scholar]
  38. Medema M. H., Fischbach M. A..( 2015;). Computational approaches to natural product discovery. . Nat Chem Biol11:639–648. [CrossRef][PubMed]
    [Google Scholar]
  39. Medema M. H., Takano E., Breitling R..( 2013;). Detecting sequence homology at the gene cluster level with MultiGeneBlast. . Mol Biol Evol30:1218–1223. [CrossRef][PubMed]
    [Google Scholar]
  40. Medema M. H., Kottmann R., Yilmaz P., Cummings M., Biggins J. B., Blin K., de Bruijn I., Chooi Y. H., Claesen J. et al.( 2015;). Minimum information about a biosynthetic gene cluster. . Nat Chem Biol11:625–631. [CrossRef][PubMed]
    [Google Scholar]
  41. Monciardini P., Iorio M., Maffioli S., Sosio M., Donadio S..( 2014;). Discovering new bioactive molecules from microbial sources. . Microb Biotechnol7:209–220. [CrossRef][PubMed]
    [Google Scholar]
  42. Moore B. S., Kalaitzis J. A., Xiang L..( 2005;). Exploiting marine actinomycete biosynthetic pathways for drug discovery. . Antonie van Leeuwenhoek87:49–57. [CrossRef]
    [Google Scholar]
  43. Nett M., Ikeda H., Moore B. S..( 2009;). Genomic basis for natural product biosynthetic diversity in the actinomycetes. . Nat Prod Rep26:1362–1384. [CrossRef][PubMed]
    [Google Scholar]
  44. Nurk S., Bankevich A., Antipov D., Gurevich A. A., Korobeynikov A., Lapidus A., Prjibelski A. D., Pyshkin A., Sirotkin A. et al.( 2013;). Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. . J Comput Biol20:714–737. [CrossRef][PubMed]
    [Google Scholar]
  45. Nylander J. A. A..( 2004;). MrModeltest v2. Evolutionary Biology Centre, Uppsala University: Program distributed by the author. .
  46. Palomo S., González I., de la Cruz M., Martín J., Tormo J. R., Anderson M., Hill R. T., Vicente F., Reyes F. et al.( 2013;). Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic Kocurin. . Mar Drugs11:1071–1086. [CrossRef][PubMed]
    [Google Scholar]
  47. Podell S., Gaasterland T..( 2007;). DarkHorse: a method for genome-wide prediction of horizontal gene transfer. . Genome Biol8:R16. [CrossRef][PubMed]
    [Google Scholar]
  48. Rothberg J. M., Hinz W., Rearick T. M., Schultz J., Mileski W., Davey M., Leamon J. H., Johnson K., Milgrew M. J. et al.( 2011;). An integrated semiconductor device enabling non-optical genome sequencing. . Nature475:348–352. [CrossRef][PubMed]
    [Google Scholar]
  49. Stamatakis A..( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics22:2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  50. Subramani R., Aalbersberg W..( 2013;). Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. . Appl Microbiol Biotechnol97:9291–9321. [CrossRef][PubMed]
    [Google Scholar]
  51. Tang X., Li J., Millán-Aguiñaga N., Zhang J. J., O'Neill E. C., Ugalde J. A., Jensen P. R., Mantovani S. M., Moore B. S..( 2015;). Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. . ACS Chem Biol10:2841–2849. [CrossRef][PubMed]
    [Google Scholar]
  52. Tiwari K., Gupta R. K..( 2012;). Rare actinomycetes: a potential storehouse for novel antibiotics. . Crit Rev Biotechnol32:108–132. [CrossRef][PubMed]
    [Google Scholar]
  53. Trzoss L., Fukuda T., Costa-Lotufo L. V., Jimenez P., La Clair J. J., Fenical W..( 2014;). Seriniquinone, a selective anticancer agent, induces cell death by autophagocytosis, targeting the cancer-protective protein dermcidin. . Proc Natl Acad Sci U S A111:14687–14692. [CrossRef]
    [Google Scholar]
  54. Tuomisto H..( 2010;). A consistent terminology for quantifying species diversity? Yes, it does exist. . Oecologia164:853–860. [CrossRef][PubMed]
    [Google Scholar]
  55. Udwary D. W., Zeigler L., Asolkar R. N., Singan V., Lapidus A., Fenical W., Jensen P. R., Moore B. S..( 2007;). Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. . Proc Natl Acad Sci U S A104:10376–10381. [CrossRef]
    [Google Scholar]
  56. Wagner M., Abdel-Mageed W. M., Ebel R., Bull A. T., Goodfellow M., Fiedler H. P., Jaspars M..( 2014;). Dermacozines H-J isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. . J Nat Prod77:416–420. [CrossRef][PubMed]
    [Google Scholar]
  57. Weber T., Blin K., Duddela S., Krug D., Kim H. U., Bruccoleri R., Lee S. Y., Fischbach M. A., Müller R. et al.( 2015;). antiSMASH 3.0 — a comprehensive resource for the genome mining of biosynthetic gene clusters. . Nucleic Acids Res43:W237–W243. [CrossRef][PubMed]
    [Google Scholar]
  58. Yamada Y., Kuzuyama T., Komatsu M., Shin-ya K., Omura S., Cane D. E., Ikeda H..( 2015;). Terpene synthases are widely distributed in bacteria. . Proc Natl Acad Sci U S A112:857–862. [CrossRef]
    [Google Scholar]
  59. Yamanaka K., Reynolds K. A., Kersten R. D., Ryan K. S., Gonzalez D. J., Nizet V., Dorrestein P. C., Moore B. S..( 2014;). Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. . Proc Natl Acad Sci U S A111:1957–1962. [CrossRef]
    [Google Scholar]
  60. Yang X.-W., Zhang G.-Y., Ying J., Yang B., Zhou X.-F., Steinmetz A., Liu Y.-H., Wang N..( 2013;). Isolation, characterization, and bioactivity evaluation of 3-((6-methylpyrazin-2-yl)methyl)-1H-indole, a new alkaloid from a deep-sea-derived actinomycete Serinicoccus profundi sp. nov. . Mar Drugs11:33–39. [CrossRef]
    [Google Scholar]
  61. Zhao X., Yang T..( 2011;). Draft genome sequence of the marine sediment-derived actinomycete Streptomyces xinghaiensis NRRL B24674T. . J Bacteriol193:5543. [CrossRef][PubMed]
    [Google Scholar]
  62. Ziemert N., Podell S., Penn K., Badger J. H., Allen E., Jensen P. R..( 2012;). The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. . PLoS One7:e34064. [CrossRef][PubMed]
    [Google Scholar]
  63. Ziemert N., Lechner A., Wietz M., Millan-Aguinaga N., Chavarria K. L., Jensen P. R..( 2014;). Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. . Proc Natl Acad Sci U S A111:E1130E1139. [CrossRef]
    [Google Scholar]
  64. Zotchev S. B..( 2012;). Marine actinomycetes as an emerging resource for the drug development pipelines. . J Biotechnol158:168–175. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000386
Loading
/content/journal/micro/10.1099/mic.0.000386
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error