1887

Abstract

Alginate-assimilating sp. strain A1 is the Gram-negative bacterium first identified to form a single polar flagellum containing lateral-typed flagellin (p6) in the filament. In addition to the p6 flagellin, two polar-typed flagellins (p5 and p5′) are also included in the flagellum. Here we show the significant role of p6 as well as p5/p5′ in flagellum formation and cell motility towards alginate. A p6 gene disruptant significantly reduced flagellum formation and it showed no cell motility, whereas each mutant with a disruption in the p5 or p5′ gene exhibited cell motility through the formation of a polar flagellum containing p6. The ratio of p6 to p5 decreased in proportion to cell growth, suggesting that strain A1 changes flagellin ratios in the filament depending on the external environment. Each of purified recombinant p5 and p6 proteins formed the filament by self-assembly and an anti-p5 antibody reacted with the p5 filament but not with the p6 filament. Immunoelectron microscopy using an anti-p5 antibody indicated that strain A1 formed two types of the filament in a single polar flagellum: p6 alone in the entire filament and p5 elongation filament subsequent to the p6 proximal end. Immunoprecipitation with an anti-p5 antibody directly demonstrated that p5 and p6 coexist in a single filament. Strain A1 cells were also found to exhibit a chemotactic motility in response to alginate. This is the first report on function/location of the lateral-typed flagellin in a single polar flagellum and the bacterial chemotaxis towards alginate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000385
2016-12-21
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/12/2042.html?itemId=/content/journal/micro/10.1099/mic.0.000385&mimeType=html&fmt=ahah

References

  1. Achenbach L. A., Michaelidou U., Bruce R. A., Fryman J., Coates J. D.. 2001; Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol51:527–533 [CrossRef][PubMed]
    [Google Scholar]
  2. Aizawa S. I., Dean G. E., Jones C. J., Macnab R. M., Yamaguchi S.. 1985; Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J Bacteriol161:836–849[PubMed]
    [Google Scholar]
  3. Belas M. R., Colwell R. R.. 1982; Scanning electron microscope observation of the swarming phenomenon of Vibrio parahaemolyticus. J Bacteriol150:956–959[PubMed]
    [Google Scholar]
  4. Blot N., Berrier C., Hugouvieux-Cotte-Pattat N., Ghazi A., Condemine G.. 2002; The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J Biol Chem277:7936–7944 [CrossRef][PubMed]
    [Google Scholar]
  5. Campos M., Martínez-Salazar J. M., Lloret L., Moreno S., Núñez C., Espín G., Soberón-Chávez G.. 1996; Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol178:1793–1799[PubMed][CrossRef]
    [Google Scholar]
  6. Darias J. A., García-Fontana C., Lugo A. C., Rico-Jiménez M., Krell T.. 2014; Qualitative and quantitative assays for flagellum-mediated chemotaxis. Methods Mol Biol1149:87–97 [CrossRef][PubMed]
    [Google Scholar]
  7. Dudin O., Lacour S., Geiselmann J.. 2013; Expression dynamics of RpoS/Crl-dependent genes in Escherichia coli. Res Microbiol164:838–847 [CrossRef][PubMed]
    [Google Scholar]
  8. Gacesa P.. 1988; Alginates. Carbohydr Polym8:161–182 [CrossRef]
    [Google Scholar]
  9. Hashimoto W., Miyake O., Momma K., Kawai S., Murata K.. 2000; Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol182:4572–4577 [CrossRef][PubMed]
    [Google Scholar]
  10. Hashimoto W., He J., Wada Y., Nankai H., Mikami B., Murata K.. 2005; Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry44:13783–13794 [CrossRef][PubMed]
    [Google Scholar]
  11. Hay I. D., Ur Rehman Z., Moradali M. F., Wang Y., Rehm B. H.. 2013; Microbial alginate production, modification and its applications. Microb Biotechnol6:637–650 [CrossRef][PubMed]
    [Google Scholar]
  12. Haya S., Tokumaru Y., Abe N., Kaneko J., Aizawa S.. 2011; Characterization of lateral flagella of Selenomonas ruminantium. Appl Environ Microbiol77:2799–2802 [CrossRef][PubMed]
    [Google Scholar]
  13. Hayashi C., Takase R., Momma K., Maruyama Y., Murata K., Hashimoto W.. 2014; Alginate-dependent gene expression mechanism in Sphingomonas sp. strain A1. J Bacteriol196:2691–2700 [CrossRef][PubMed]
    [Google Scholar]
  14. Hisano T., Yonemoto Y., Yamashita T., Fukuda Y., Kimura A., Murata K.. 1995; Direct uptake of alginate molecules through a pit on the bacterial cell surface: a novel mechanism for the uptake of macromolecules. J Ferment Bioeng79:538–544 [CrossRef]
    [Google Scholar]
  15. Hugouvieux-Cotte-Pattat N., Blot N., Reverchon S.. 2001; Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol41:1113–1123 [CrossRef][PubMed]
    [Google Scholar]
  16. Iida Y., Hobley L., Lambert C., Fenton A. K., Sockett R. E., Aizawa S.. 2009; Roles of multiple flagellins in flagellar formation and flagellar growth post bdelloplast lysis in Bdellovibrio bacteriovorus. J Mol Biol394:1011–1021 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim Y. K., McCarter L. L.. 2000; Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J Bacteriol182:3693–3704 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimbara K., Hashimoto T., Fukuda M., Koana T., Takagi M., Oishi M., Yano K.. 1989; Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol171:2740–2747[PubMed][CrossRef]
    [Google Scholar]
  19. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J. C.. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996 [CrossRef][PubMed]
    [Google Scholar]
  20. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  21. Maruyama Y., Momma M., Mikami B., Hashimoto W., Murata K.. 2008; Crystal structure of a novel bacterial cell-surface flagellin binding to a polysaccharide. Biochemistry47:1393–1402 [CrossRef][PubMed]
    [Google Scholar]
  22. Maruyama Y., Kobayashi M., Murata K., Hashimoto W.. 2015; Formation of a single polar flagellum by lateral and polar bacterial gene sets. Microbiology161:1552–1560[CrossRef]
    [Google Scholar]
  23. May T. B., Chakrabarty A. M.. 1994; Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol2:151–157 [CrossRef][PubMed]
    [Google Scholar]
  24. McCarter L. L., Wright M. E.. 1993; Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J Bacteriol175:3361–3371[PubMed][CrossRef]
    [Google Scholar]
  25. McCarter L., Hilmen M., Silverman M.. 1988; Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell54:345–351 [CrossRef][PubMed]
    [Google Scholar]
  26. Minamino T., Imada K., Namba K.. 2008; Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst4:1105–1115 [CrossRef][PubMed]
    [Google Scholar]
  27. Momma K., Okamoto M., Mishima Y., Mori S., Hashimoto W., Murata K.. 2000; A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J Bacteriol182:3998–4004 [CrossRef][PubMed]
    [Google Scholar]
  28. Ruvkun G. B., Ausubel F. M.. 1981; A general method for site-directed mutagenesis in prokaryotes. Nature289:85–88 [CrossRef][PubMed]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Schneider C. A., Rasband W. S., Eliceiri K. W.. 2012; NIH Image to ImageJ: 25 years of image analysis. Nat Methods9:671–675 [CrossRef][PubMed]
    [Google Scholar]
  31. Shinoda S., Okamoto K.. 1977; Formation and function of Vibrio parahaemolyticus lateral flagella. J Bacteriol129:1266–1271[PubMed]
    [Google Scholar]
  32. Soutourina O. A., Bertin P. N.. 2003; Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev27:505–523 [CrossRef][PubMed]
    [Google Scholar]
  33. Stokstad E.. 2012; Biofuels. Engineered superbugs boost hopes of turning seaweed into fuel. Science335:273 [CrossRef][PubMed]
    [Google Scholar]
  34. Takeda H., Yoneyama F., Kawai S., Hashimoto W., Murata K.. 2011; Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci4:2575–2581 [CrossRef]
    [Google Scholar]
  35. van Houdt R., Michiels C. W.. 2005; Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol156:626–633 [CrossRef][PubMed]
    [Google Scholar]
  36. Vonderviszt F., Kanto S., Aizawa S., Namba K.. 1989; Terminal regions of flagellin are disordered in solution. J Mol Biol209:127–133 [CrossRef][PubMed]
    [Google Scholar]
  37. Vonderviszt F., Uedaira H., Kidokoro S., Namba K.. 1990; Structural organization of flagellin. J Mol Biol214:97–104 [CrossRef][PubMed]
    [Google Scholar]
  38. Wong T. Y., Preston L. A., Schiller N. L.. 2000; Alginate lyase: review of major sources and enzyme characteristics, structure–function analysis, biological roles, and applications. Annu Rev Microbiol54:289–340 [CrossRef][PubMed]
    [Google Scholar]
  39. Wösten M. M., van Dijk L., Veenendaal A. K., de Zoete M. R., Bleumink-Pluijm N. M., van Putten J. P.. 2010; Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length. Mol Microbiol75:1577–1591 [CrossRef][PubMed]
    [Google Scholar]
  40. Yonekura K., Maki-Yonekura S., Namba K.. 2003; Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature424:643–650 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000385
Loading
/content/journal/micro/10.1099/mic.0.000385
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error