1887

Abstract

To examine the possible physiological significance of Mrp, a multi-subunit cation/proton antiporter from Vibrio cholerae, a chromosomal deletion Δmrp of V. cholerae was constructed and characterized. The resulting mutant showed a consistent early growth defect in LB broth that became more evident at elevated pH of the growth medium and increasing Na or K loads. After 24 h incubation, these differences disappeared likely due to the concerted effort of other cation pumps in the mrp mutant. Phenotype MicroArray analyses revealed an unexpected systematic defect in nitrogen utilization in the Δmrp mutant that was complemented by using the mrpA′-F operon on an arabinose-inducible expression vector. Deletion of the mrp operon also led to hypermotility, observable on LB and M9 semi-solid agar. Surprisingly, Δmrp mutation resulted in wild-type biofilm formation in M9 despite a growth defect but the reverse was true in LB. Furthermore, the Δmrp strain exhibited higher susceptibility to amphiphilic anions. These pleiotropic phenotypes of the Δmrp mutant demonstrate how the chemiosmotic activity of Mrp contributes to the survival potential of V. cholerae despite the presence of an extended battery of cation/proton antiporters of varying ion selectivity and pH profile operating in the same membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000384
2016-12-21
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/12/2147.html?itemId=/content/journal/micro/10.1099/mic.0.000384&mimeType=html&fmt=ahah

References

  1. Asai Y., Yakushi T., Kawagishi I., Homma M..( 2003;). Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. . J Mol Biol 327: 453–463. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bochner B. R., Gadzinski P., Panomitros E..( 2001;). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. . Genome Res 11: 1246–1255. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chatterjee A., Chaudhuri S., Saha G., Gupta S., Chowdhury R..( 2004;). Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae. . J Bacteriol 186: 6809–6814. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dibrov P., Rimon A., Dzioba J., Winogrodzki A., Shalitin Y., Padan E..( 2005;). 2-Aminoperimidine, a specific inhibitor of bacterial NhaA Na(+)/H(+) antiporters. . FEBS Lett 579: 373–378. [CrossRef] [PubMed]
    [Google Scholar]
  5. Donnenberg M. S., Kaper J. B..( 1991;). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. . Infect Immun 59: 4310–4317.[PubMed]
    [Google Scholar]
  6. Dzioba J., Ostroumov E., Winogrodzki A., Dibrov P..( 2002;). Cloning, functional expression in Escherichia coli and primary characterization of a new Na+/H+ antiporter, NhaD, of Vibrio cholerae. . Mol Cell Biochem 229: 119–124.[PubMed] [CrossRef]
    [Google Scholar]
  7. Dzioba-Winogrodzki J., Winogrodzki O., Krulwich T. A., Boin M. A., Häse C. C., Dibrov P..( 2009;). The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host. . J Mol Microbiol Biotechnol 16: 176–186. [CrossRef] [PubMed]
    [Google Scholar]
  8. Habibian R., Dzioba J., Barrett J., Galperin M. Y., Loewen P. C., Dibrov P..( 2005;). Functional analysis of conserved polar residues in Vc-NhaD, Na+/H+ antiporter of Vibrio cholerae. . J Biol Chem 280: 39637–39643. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hamamoto T., Hashimoto M., Hino M., Kitada M., Seto Y., Kudo T., Horikoshi K..( 1994;). Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. . Mol Microbiol 14: 939–946. [CrossRef] [PubMed]
    [Google Scholar]
  10. Häse C. C., Barquera B..( 2001;). Role of sodium bioenergetics in Vibrio cholerae. . Biochim Biophys Acta 1505: 169–178. [CrossRef] [PubMed]
    [Google Scholar]
  11. Häse C. C., Mekalanos J. J..( 1999;). Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. . Proc Natl Acad Sci U S A 96: 3183–3187. [CrossRef] [PubMed]
    [Google Scholar]
  12. Häse C. C., Fedorova N. D., Galperin M. Y., Dibrov P. A..( 2001;). Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. . Microbiol Mol Biol Rev 65: 353–370, Table of contents. [CrossRef] [PubMed]
    [Google Scholar]
  13. Heithoff D. M., Mahan M. J..( 2004;). Vibrio cholerae biofilms: stuck between a rock and a hard place. . J Bacteriol 186: 4835–4837. [CrossRef] [PubMed]
    [Google Scholar]
  14. Herz K., Vimont S., Padan E., Berche P..( 2003;). Roles of NhaA, NhaB, and NhaD Na+/H+ antiporters in survival of Vibrio cholerae in a saline environment. . J Bacteriol 185: 1236–1244. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R..( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. . Gene 77: 51–59. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ito M., Guffanti A. A., Oudega B., Krulwich T. A..( 1999;). Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. . J Bacteriol 181: 2394–2402.[PubMed]
    [Google Scholar]
  17. Ito M., Guffanti A. A., Wang W., Krulwich T. A..( 2000;). Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na(+) and alkali but not cholate resistance. . J Bacteriol 182: 5663–5670. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kojima S., Yamamoto K., Kawagishi I., Homma M..( 1999;). The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. . J Bacteriol 181: 1927–1930.[PubMed]
    [Google Scholar]
  19. Kosono S., Morotomi S., Kitada M., Kudo T..( 1999;). Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of alkaliphilic Bacillus sp. C-125. . Biochim Biophys Acta 1409: 171–175. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kosono S., Ohashi Y., Kawamura F., Kitada M., Kudo T..( 2000;). Function of a principal Na(+)/H(+) antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. . J Bacteriol 182: 898–904. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kosono S., Haga K., Tomizawa R., Kajiyama Y., Hatano K., Takeda S., Wakai Y., Hino M., Kudo T..( 2005;). Characterization of a multigene-encoded sodium/hydrogen antiporter (sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. . J Bacteriol 187: 5242–5248. [CrossRef] [PubMed]
    [Google Scholar]
  22. Krulwich T. A., Hicks D. B., Ito M..( 2009;). Cation/proton antiporter complements of bacteria: why so large and diverse?. Mol Microbiol 74: 257–260. [CrossRef]
    [Google Scholar]
  23. Lauriano C. M., Ghosh C., Correa N. E., Klose K. E..( 2004;). The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. . J Bacteriol 186: 4864–4874. [CrossRef] [PubMed]
    [Google Scholar]
  24. Magariyama Y., Sugiyama S., Muramoto K., Maekawa Y., Kawagishi I., Imae Y., Kudo S..( 1994;). Very fast flagellar rotation. . Nature 371: 752. [CrossRef] [PubMed]
    [Google Scholar]
  25. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L..( 1996;). Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. . Plasmid 35: 1–13. [CrossRef] [PubMed]
    [Google Scholar]
  26. Miller C. J., Drasar B. S., Feachem R. G..( 1984;). Response of toxigenic Vibrio cholerae 01 to physico-chemical stresses in aquatic environments. . J Hygiene 93: 475–495. [CrossRef]
    [Google Scholar]
  27. Minato Y., Fassio S. R., Reddekopp R. L., Häse C. C..( 2014;). Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase. . Microb Pathog 66: 36–39. [CrossRef] [PubMed]
    [Google Scholar]
  28. Prouty M. G., Correa N. E., Klose K. E..( 2001;). The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. . Mol Microbiol 39: 1595–1609. [CrossRef] [PubMed]
    [Google Scholar]
  29. Putnoky P., Kereszt A., Nakamura T., Endre G., Grosskopf E., Kiss P., Kondorosi A..( 1998;). The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. . Mol Microbiol 28: 1091–1101. [CrossRef] [PubMed]
    [Google Scholar]
  30. Quinn M. J., Resch C. T., Sun J., Lind E. J., Dibrov P., Häse C. C..( 2012;). NhaP1 is a K+(Na+)/H+ antiporter required for growth and internal pH homeostasis of Vibrio cholerae at low extracellular pH. . Microbiology 158: 1094–1105. [CrossRef] [PubMed]
    [Google Scholar]
  31. Resch C. T., Winogrodzki J. L., Patterson C. T., Lind E. J., Quinn M. J., Dibrov P., Häse C. C..( 2010;). The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. . Biochemistry 49: 2520–2528. [CrossRef] [PubMed]
    [Google Scholar]
  32. Singleton F. L., Attwell R., Jangi S., Colwell R. R..( 1982a;). Effects of temperature and salinity on Vibrio cholerae growth. . Appl Environ Microbiol 44: 1047–1058.
    [Google Scholar]
  33. Singleton F. L., Attwell R. W., Jangi M. S., Colwell R. R..( 1982b;). Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. . Appl Environ Microbiol 43: 1080–1085.
    [Google Scholar]
  34. Swartz T. H., Ikewada S., Ishikawa O., Ito M., Krulwich T. A..( 2005;). The Mrp system: a giant among monovalent cation/proton antiporters?. Extremophiles 9: 345–354. [CrossRef] [PubMed]
    [Google Scholar]
  35. Watnick P. I., Kolter R..( 1999;). Steps in the development of a Vibrio cholerae El Tor biofilm. . Mol Microbiol 34: 586–595. [CrossRef] [PubMed]
    [Google Scholar]
  36. Watnick P. I., Fullner K. J., Kolter R..( 1999;). A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. . J Bacteriol 181: 3606–3609.[PubMed]
    [Google Scholar]
  37. Wiens E. J., Winogrodzki J. L., Resch C. T., Orriss G. L., Stetefeld J., Dibrov P..( 2014;). The C-terminal cytoplasmic portion of the NhaP2 cation-proton antiporter from Vibrio cholerae affects its activity and substrate affinity. . Mol Cell Biochem 389: 51–58. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhou L., Lei X. H., Bochner B. R., Wanner B. L..( 2003;). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. . J Bacteriol 185: 4956–4972. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000384
Loading
/content/journal/micro/10.1099/mic.0.000384
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error