1887

Abstract

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000381
2016-12-21
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/12/2136.html?itemId=/content/journal/micro/10.1099/mic.0.000381&mimeType=html&fmt=ahah

References

  1. Blattner F. R., Plunkett G., Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. et al.( 1997;). The complete genome sequence of Escherichia coli K-12. . Science 277: 1453–1462. [CrossRef] [PubMed]
    [Google Scholar]
  2. Buchanan G., Maillard J., Nabuurs S. B., Richardson D. J., Palmer T., Sargent F..( 2008;). Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. . FEBS Lett 582: 3979–3984. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chan C. S., Winstone T. M., Chang L., Stevens C. M., Workentine M. L., Li H., Wei Y., Ondrechen M. J., Paetzel M. et al.( 2008;). Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis. . Biochemistry 47: 2749–2759. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chan C. S., Bay D. C., Leach T. G., Winstone T. M., Kuzniatsova L., Tran V. A., Turner R. J..( 2014;). ‘ Come into the fold’: a comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. . Biochim Biophys Acta 1838: 2971–2984. [CrossRef] [PubMed]
    [Google Scholar]
  5. Coulthurst S. J., Dawson A., Hunter W. N., Sargent F..( 2012;). Conserved signal peptide recognition systems across the prokaryotic domains. . Biochemistry 51: 1678–1686. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cristóbal S., de Gier J. W., Nielsen H., von Heijne G..( 1999;). Competition between Sec- and Tat-dependent protein translocation in Escherichia coli. . EMBO J 18: 2982–2990. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dunn S. D..( 1986;). Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. . Anal Biochem 157: 144–153. [CrossRef] [PubMed]
    [Google Scholar]
  8. Grahl S., Maillard J., Spronk C. A., Vuister G. W., Sargent F..( 2012;). Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide. . Mol Microbiol 83: 1254–1267. [CrossRef] [PubMed]
    [Google Scholar]
  9. Guymer D., Maillard J., Sargent F..( 2009;). A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. . Arch Microbiol 191: 519–528. [CrossRef] [PubMed]
    [Google Scholar]
  10. Guymer D., Maillard J., Agacan M. F., Brearley C. A., Sargent F..( 2010;). Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping. . FEBS J 277: 511–525. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R..( 1989;). New method for generating deletions and gene replacements in Escherichia coli. . J Bacteriol 171: 4617–4622.[PubMed] [CrossRef]
    [Google Scholar]
  12. Hensel M., Hinsley A. P., Nikolaus T., Sawers G., Berks B. C..( 1999;). The genetic basis of tetrathionate respiration in Salmonella typhimurium. . Mol Microbiol 32: 275–287. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jack R. L., Buchanan G., Dubini A., Hatzixanthis K., Palmer T., Sargent F..( 2004;). Coordinating assembly and export of complex bacterial proteins. . EMBO J 23: 3962–3972. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jamieson D. J., Sawers R. G., Rugman P. A., Boxer D. H., Higgins C. F..( 1986;). Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrogenase isoenzyme composition in Salmonella typhimurium. . J Bacteriol 168: 405–411.[PubMed] [CrossRef]
    [Google Scholar]
  15. Karimova G., Pidoux J., Ullmann A., Ladant D..( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95: 5752–5756. [CrossRef] [PubMed]
    [Google Scholar]
  16. Köhrl J., Brigelius-Flohé R., Böck A., Gärtner R., Meyer O., Flohé L..( 2000;). Selenium in biology: facts and medical perspectives. . Biol Chem 381: 849–864. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kostecki J. S., Li H., Turner R. J., DeLisa M. P..( 2010;). Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. . PLoS One 5: e9225. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kuzniatsova L., Winstone T. M., Turner R. J..( 2016;). Identification of protein–protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. . Biochim Biophys Acta 1858: 767–775. [CrossRef] [PubMed]
    [Google Scholar]
  19. Laemmli U. K..( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227: 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lopez C. A., Rivera-Chávez F., Byndloss M. X., Bäumler A. J..( 2015;). The periplasmic nitrate reductase NapABC supports luminal growth of Salmonella enterica serovar Typhimurium during colitis. . Infect Immun 83: 3470–3478. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lubitz S. P., Weiner J. H..( 2003;). The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). . Arch Biochem Biophys 418: 205–216. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lundberg J. O., Weitzberg E., Cole J. A., Benjamin N..( 2004;). Nitrate, bacteria and human health. . Nat Rev Microbiol 2: 593–602. [CrossRef] [PubMed]
    [Google Scholar]
  23. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M. et al.( 2001;). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. . Nature 413: 852–856. [CrossRef] [PubMed]
    [Google Scholar]
  24. Oresnik I. J., Ladner C. L., Turner R. J..( 2001;). Identification of a twin-arginine leader-binding protein. . Mol Microbiol 40: 323–331. [CrossRef] [PubMed]
    [Google Scholar]
  25. Palmer T., Berks B. C..( 2012;). The twin-arginine translocation (Tat) protein export pathway. . Nat Rev Microbiol 10: 483–496. [CrossRef] [PubMed]
    [Google Scholar]
  26. Qiu Y., Zhang R., Binkowski T. A., Tereshko V., Joachimiak A., Kossiakoff A..( 2008;). The 1.38 Å crystal structure of DmsD protein from Salmonella typhimurium, a proofreading chaperone on the Tat pathway. . Proteins 71: 525–533. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ramasamy S. K., Clemons W. M..( 2009;). Structure of the twin-arginine signal-binding protein DmsD from Escherichia coli. . Acta Crystallogr Sect F Struct Biol Cryst Commun 65: 746–750. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ray N., Oates J., Turner R. J., Robinson C..( 2003;). DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus. . FEBS Lett 534: 156–160. [CrossRef] [PubMed]
    [Google Scholar]
  29. Rowley G., Hensen D., Felgate H., Arkenberg A., Appia-Ayme C., Prior K., Harrington C., Field S. J., Butt J. N. et al.( 2012;). Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium. . Biochem J 441: 755–762. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sarfo K. J., Winstone T. L., Papish A. L., Howell J. M., Kadir H., Vogel H. J., Turner R. J..( 2004;). Folding forms of Escherichia coli DmsD, a twin-arginine leader binding protein. . Biochem Biophys Res Commun 315: 397–403. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sargent F..( 2007;). Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. . Microbiology 153: 633–651. [CrossRef] [PubMed]
    [Google Scholar]
  32. Shanmugham A., Bakayan A., Völler P., Grosveld J., Lill H., Bollen Y. J..( 2012;). The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones. . PLoS One 7: e34159. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stevens C. M., Winstone T. M., Turner R. J., Paetzel M..( 2009;). Structural analysis of a monomeric form of the twin-arginine leader peptide binding chaperone Escherichia coli DmsD. . J Mol Biol 389: 124–133. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stevens C. M., Okon M., McIntosh L. P., Paetzel M..( 2013;). ¹H, 13C and 15N resonance assignments and peptide binding site chemical shift perturbation mapping for the Escherichia coli redox enzyme chaperone DmsD. . Biomol NMR Assign 7: 193–197. [CrossRef] [PubMed]
    [Google Scholar]
  35. Stoffels L., Krehenbrink M., Berks B. C., Unden G..( 2012;). Thiosulfate reduction in Salmonella enterica is driven by the proton motive force. . J Bacteriol 194: 475–485. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sutherland B. W., Toews J., Kast J..( 2008;). Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. . J Mass Spectrom 43: 699–715. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tranier S., Mortier-Barrière I., Ilbert M., Birck C., Iobbi-Nivol C., Méjean V., Samama J. P..( 2002;). Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA. . Protein Sci 11: 2148–2157. [CrossRef] [PubMed]
    [Google Scholar]
  38. Turner R. J., Papish A. L., Sargent F..( 2004;). Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). . Can J Microbiol 50: 225–238. [CrossRef] [PubMed]
    [Google Scholar]
  39. Unden G., Steinmetz P. A., Degreif-Dünnwald P..( 2014;). The aerobic and anaerobic respiratory chain of Escherichia coli and Salmonella enterica: enzymes and energetics. . EcoSal Plus 6:. [CrossRef] [PubMed]
    [Google Scholar]
  40. Vartanian J. P., Henry M., Wain-Hobson S..( 1996;). Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. . Nucleic Acids Res 24: 2627–2631. [CrossRef] [PubMed]
    [Google Scholar]
  41. Winstone T. M., Turner R. J..( 2015;). Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif. . Biochemistry 54: 2040–2051. [CrossRef] [PubMed]
    [Google Scholar]
  42. Winstone T. M., Tran V. A., Turner R. J..( 2013;). The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD. . Biochemistry 52: 7532–7541. [CrossRef] [PubMed]
    [Google Scholar]
  43. Winter S. E., Thiennimitr P., Winter M. G., Butler B. P., Huseby D. L., Crawford R. W., Russell J. M., Bevins C. L., Adams L. G. et al.( 2010;). Gut inflammation provides a respiratory electron acceptor for Salmonella. . Nature 467: 426–429. [CrossRef] [PubMed]
    [Google Scholar]
  44. Winter S. E., Winter M. G., Xavier M. N., Thiennimitr P., Poon V., Keestra A. M., Laughlin R. C., Gomez G., Wu J. et al.( 2013;). Host-derived nitrate boosts growth of E. coli in the inflamed gut. . Science 339: 708–711. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000381
Loading
/content/journal/micro/10.1099/mic.0.000381
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error