1887

Abstract

The spirochaete bacterium is the aetiologic agent of Lyme disease. is transmitted to mammals through tick bite and is adapted to survive at tick and mammalian physiological temperatures. We have previously shown that can exist in different morphological forms, including the antibiotic-resistant biofilm form, and . forms aggregates in ticks as well as in humans, indicating potential of biofilm formation at both 23 and 37 °C. However, the role of various environmental factors that influence biofilm formation remains unknown. In this study, we investigated the effect of tick (23 °C), mammalian physiological (37 °C) and standard culture (33 °C) temperatures with the objective of elucidating the effect of temperature on biofilm phenotypes using two strains (B31 and 297). Our findings show increased biofilm quantity, biofilm size, exopolysaccharide content and enhanced adherence as well as reduced free spirochaetes at 37 °C for both strains, when compared to growth at 23 and 33 °C. There were no significant variations in the biofilm nano-topography and the type of extracellular polymeric substance in biofilms formed at all three temperatures. Significant variations in extracellular DNA content were observed in the biofilms of both strains cultured at the three temperatures. Our results indicate that temperature is an important regulator of biofilm development, and that the mammalian physiological temperature favours increased biofilm formation compared to tick physiological temperature and culture temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000380
2016-11-23
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1984.html?itemId=/content/journal/micro/10.1099/mic.0.000380&mimeType=html&fmt=ahah

References

  1. Aberer E., Duray P. H.. 1991; Morphology of Borrelia burgdorferi: structural patterns of cultured borreliae in relation to staining methods. J Clin Microbiol29:764–772[PubMed]
    [Google Scholar]
  2. Ahimou F., Semmens M. J., Haugstad G., Novak P. J.. 2007; Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol73:2905–2910 [CrossRef][PubMed]
    [Google Scholar]
  3. Ahmed N. A., Petersen F. C., Scheie A. A.. 2008; Biofilm formation and autoinducer-2 signaling in Streptococcus intermedius: role of thermal and pH factors. Oral Microbiol Immunol23:492–497 [CrossRef][PubMed]
    [Google Scholar]
  4. Al-Robaiy S., Dihazi H., Kacza J., Seeger J., Schiller J., Huster D., Knauer J., Straubinger R. K.. 2010; Metamorphosis of Borrelia burgdorferi organisms — RNA, lipid and protein composition in context with the spirochetes' shape. J Basic Microbiol50:S5–S17 [CrossRef][PubMed]
    [Google Scholar]
  5. Alban P. S., Nelson D. R., Johnson P. W.. 2000; Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiol146:119–127 [CrossRef]
    [Google Scholar]
  6. Allegrucci M., Sauer K.. 2007; Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol189:2030–2038 [CrossRef][PubMed]
    [Google Scholar]
  7. Angeles-Morales E., Mondragón-Flores R., Luna-Arias J., Enríquez-Nieto C., Parra-Ortega B., Castro-Escarpulli G.. 2012; Evaluation of morphological changes of Aeromonas caviae Sch3 biofilm formation under optimal conditions. Adv Microbiol1:552–560[CrossRef]
    [Google Scholar]
  8. Aspe M., Jensen L.. 2012; The role of alginate and extracellular DNA in biofilm-meditated Pseudomonas aeruginosa gentamicin resistance. J Exp Microbiol Immunol16:42–48
    [Google Scholar]
  9. Barbour A. G., Hayes S. F.. 1986; Biology of Borrelia species. Microbiol Rev50:381–400[PubMed]
    [Google Scholar]
  10. Borucki M. K., Peppin J. D., White D., Loge F., Call D. R.. 2003; Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol69:7336–7342 [CrossRef][PubMed]
    [Google Scholar]
  11. Boyd A., Chakrabarty A. M.. 1995; Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol15:162–168 [CrossRef][PubMed]
    [Google Scholar]
  12. Brisson D., Vandermause M. F., Meece J. K., Reed K. D., Dykhuizen D. E.. 2010; Evolution of northeastern and midwestern Borrelia burgdorferi, United States. Emer Infect Dis16:911–917[CrossRef]
    [Google Scholar]
  13. Colvin K. M., Gordon V. D., Murakami K., Borlee B. R., Wozniak D. J., Wong G. C., Parsek M. R.. 2011; The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog7:e1001264 [CrossRef][PubMed]
    [Google Scholar]
  14. Colvin K. M., Irie Y., Tart C. S., Urbano R., Whitney J. C., Ryder C., Howell P. L., Wozniak D. J., Parsek M. R.. 2012; The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol14:1913–1928 [CrossRef][PubMed]
    [Google Scholar]
  15. Cotton L., Graham R., Lee R.. 2009; The role of alginate in P. aeruginosa PAO1 biofilm structural resistance to gentamicin and ciprofloxacin. J Exp Microbiol Immunol13:58–62
    [Google Scholar]
  16. Cowan S. E., Gilbert E., Liepmann D., Keasling J. D.. 2000; Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl Environ Microbiol66:4481–4485 [CrossRef][PubMed]
    [Google Scholar]
  17. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F.. 1999; The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun67:5427–5433[PubMed]
    [Google Scholar]
  18. Czaczyk K., Myszka K.. 2007; Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud16:799–806
    [Google Scholar]
  19. da Silva Meira Q. G., de Medeiros Barbosa I., Alves Aguiar Athayde A. J., de Siqueira-Júnior J. P., de Souza E. L.. 2012; Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control25:469–475 [CrossRef]
    [Google Scholar]
  20. Das T., Sharma P. K., Krom B. P., van der Mei H. C., Busscher H. J.. 2011; Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. Langmuir27:10113–10118 [CrossRef][PubMed]
    [Google Scholar]
  21. Davies D.. 2003; Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2:114–136 [CrossRef][PubMed]
    [Google Scholar]
  22. Di Bonaventura G., Piccolomini R., Paludi D., D'Orio V., Vergara A., Conter M., Ianieri A., D’Orio V.. 2008; Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol104:1552–1561 [CrossRef][PubMed]
    [Google Scholar]
  23. Donlan R. M.. 2001; Biofilms and device-associated infections. Emerg Infect Dis 7:277–281[CrossRef]
    [Google Scholar]
  24. Donlan R. M., Costerton J. W.. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193 [CrossRef][PubMed]
    [Google Scholar]
  25. Dunham-Ems S. M., Caimano M. J., Pal U., Wolgemuth C. W., Eggers C. H., Balic A., Radolf J. D.. 2009; Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest119:3652–3665 [CrossRef][PubMed]
    [Google Scholar]
  26. Dutta D., Willcox M. D.. 2013; A laboratory assessment of factors that affect bacterial adhesion to contact lenses. Biology2:1268–1281 [CrossRef][PubMed]
    [Google Scholar]
  27. Embers M. E., Barthold S. W., Borda J. T., Bowers L., Doyle L., Hodzic E., Jacobs M. B., Hasenkampf N. R., Martin D. S. et al. 2012; Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One7:e29914 [CrossRef][PubMed]
    [Google Scholar]
  28. Faruque S. M., Biswas K., Udden S. M., Ahmad Q. S., Sack D. A., Nair G. B., Mekalanos J. J.. 2006; Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci U S A103:6350–6355 [CrossRef][PubMed]
    [Google Scholar]
  29. Feng J., Wang T., Shi W., Zhang S., Sullivan D., Auwaerter P. G., Zhang Y.. 2014; Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg Microbes Infect3:e49 [CrossRef][PubMed]
    [Google Scholar]
  30. Flemming H. C., Wingender J.. 2001; Relevance of microbial extracellular polymeric substances (EPSs) — Part I: structural and ecological aspects. Water Sci Technol43:1–8[PubMed]
    [Google Scholar]
  31. Fletcher M.. 1977; The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol23:1–6 [CrossRef]
    [Google Scholar]
  32. Gandhi H. P., Ray R. M., Patel R. M.. 1997; Exopolymer production by Bacillus species. Carbohydrate Polymers34:323–327 [CrossRef]
    [Google Scholar]
  33. Garon C. F., Doward D., Corwin M. D.. 1989; Structural features of Borrelia burgdorferi — the lyme disease. Scan Micro Int Suppl3:109–115
    [Google Scholar]
  34. Garrett T. R., Bhakoo M., Zhang Z.. 2008; Bacterial adhesion and biofilms on surfaces. Prog Nat Sci18:1049–1056 [CrossRef]
    [Google Scholar]
  35. Gomes-Solecki M.. 2014; Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi. Front Cell Infect Microbiol4:136 [CrossRef][PubMed]
    [Google Scholar]
  36. Hanlon G. W., Denyer S. P., Olliff C. J., Ibrahim L. J.. 2001; Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol67:2746–2753 [CrossRef][PubMed]
    [Google Scholar]
  37. Hinnebusch B. J., Erickson D. L.. 2008; Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol322:229–248[PubMed]
    [Google Scholar]
  38. Hinthong W., Indrawattana N., Pitaksajjakul P., Pipattanaboon C., Kongngoen T., Tharnpoophasiam P., Worakhunpiset S.. 2015; Effect of temperature on fimbrial gene expression and adherence of enteroaggregative Escherichia coli. Int J Environ Res Public Health12:8631–8643 [CrossRef][PubMed]
    [Google Scholar]
  39. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O.. 2010; Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents35:322–332 [CrossRef][PubMed]
    [Google Scholar]
  40. Iyer V. S., Hancock L. E.. 2012; Deletion of σ(54) (rpoN) alters the rate of autolysis and biofilm formation in Enterococcus faecalis. J Bacteriol194:368–443 [CrossRef][PubMed]
    [Google Scholar]
  41. Johnson R. C., Schmid G. P., Hyde F. W., Steigerwalt A. G., Brenner D. J.. 1984; Borrelia burgdorferi sp. nov.: etiologic agent of lyme disease. Int J Syst Bacteriol34:496–497 [CrossRef]
    [Google Scholar]
  42. Katsikogianni M., Missirlis Y. F.. 2004; Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria–material interactions. Eur Cells Mater8:37–57
    [Google Scholar]
  43. Leid J. G., Willson C. J., Shirtliff M. E., Hassett D. J., Parsek M. R., Jeffers A. K.. 2005; The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol175:7512–7518 [CrossRef][PubMed]
    [Google Scholar]
  44. Lewis K.. 2007; Persister cells, dormancy and infectious disease. Nat Rev Microbiol5:48–56 [CrossRef][PubMed]
    [Google Scholar]
  45. Ma L., Conover M., Lu H., Parsek M. R., Bayles K., Wozniak D. J.. 2009; Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog5:e1000354 [CrossRef][PubMed]
    [Google Scholar]
  46. Meriläinen L., Herranen A., Schwarzbach A., Gilbert L.. 2015; Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiol161:516–527[CrossRef]
    [Google Scholar]
  47. Miklossy J., Kasas S., Zurn A. D., McCall S., Yu S., McGeer P. L.. 2008; Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation5:40 [CrossRef][PubMed]
    [Google Scholar]
  48. Moormeier D. E., Bose J. L., Horswill A. R., Bayles K. W.. 2014; Temporal and stochastic control of Staphylococcus aureus biofilm development. MBio5:e01341-14 [CrossRef][PubMed]
    [Google Scholar]
  49. Norwood D. E., Gilmour A.. 2001; The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Lett Appl Microbiol33:320–324 [CrossRef][PubMed]
    [Google Scholar]
  50. O'Toole G., Kaplan H. B., Kolter R.. 2000; Biofilm formation as microbial development. Annu Rev Microbiol54:49–79 [CrossRef][PubMed]
    [Google Scholar]
  51. Obana N., Nakamura K., Nomura N.. 2014; A sporulation factor is involved in the morphological change of Clostridium perfringens biofilms in response to temperature. J Bacteriol196:1540–1550 [CrossRef][PubMed]
    [Google Scholar]
  52. Ochiai Y., Yamada F., Mochizuki M., Takano T., Hondo R., Ueda F.. 2014; Biofilm formation under different temperature conditions by a single genotype of persistent Listeria monocytogenes strains. J Food Prot77:133–140 [CrossRef][PubMed]
    [Google Scholar]
  53. Orgad O., Oren Y., Walker S. L., Herzberg M.. 2011; The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment. Biofouling27:787–798 [CrossRef][PubMed]
    [Google Scholar]
  54. Piao Z., Sze C. C., Barysheva O., Iida K., Yoshida S.. 2006; Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol72:1613–1622 [CrossRef][PubMed]
    [Google Scholar]
  55. Qin Z., Ou Y., Yang L., Zhu Y., Tolker-Nielsen T., Molin S., Qu D.. 2007; Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology153:2083–2092 [CrossRef]
    [Google Scholar]
  56. Rudenko N., Golovchenko M., Grubhoffer L., Oliver J. H.. 2011; Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis2:123–128 [CrossRef][PubMed]
    [Google Scholar]
  57. Sanchez C. J., Mende K., Beckius M. L., Akers K. S., Romano D. R., Wenke J. C., Murray C. K.. 2013; Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis13:47 [CrossRef][PubMed]
    [Google Scholar]
  58. Sapi E., Kaur N., Anyanwu S., Luecke D. F., Datar A., Patel S., Rossi M., Stricker R. B.. 2011; Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist4:97–113 [CrossRef][PubMed]
    [Google Scholar]
  59. Sapi E., Bastian S. L., Mpoy C. M., Scott S., Rattelle A., Pabbati N., Poruri A., Burugu D., Theophilus P. A. et al. 2012; Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One7:e48277 [CrossRef][PubMed]
    [Google Scholar]
  60. Sapi E., Balasubramanian K., Poruri A., Maghsoudlou J. S., Socarras K. M., Timmaraju A. V., Filush K. R., Gupta K., Shaikh S. et al. 2016; Evidence of in vivo existence of Borrelia biofilm in borrelial lymphocytomas. Eur J Microbiol Immunol6:9–24 [CrossRef][PubMed]
    [Google Scholar]
  61. Srere A.. 1973; Studies on cell adhesion. 3. Adhesion of baby hamster kidney cells rate of attachment of BHK cells. J Cell Biol56:659–665[CrossRef]
    [Google Scholar]
  62. Srivastava S. Y., de Silva A. M.. 2009; Characterization of Borrelia burgdorferi aggregates. Vector Borne Zoonotic Dis9:323–329 [CrossRef][PubMed]
    [Google Scholar]
  63. Stapper A. P., Narasimhan G., Ohman D. E., Barakat J., Hentzer M., Molin S., Kharazmi A., Høiby N., Mathee K.. 2004; Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol53:679–769 [CrossRef][PubMed]
    [Google Scholar]
  64. Stepanović S., Ćirković I., Mijač V., Švabić-Vlahović M.. 2003; Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol20:339–343 [CrossRef]
    [Google Scholar]
  65. Stewart P. S., Franklin M. J.. 2008; Physiological heterogeneity in biofilms. Nat Rev Microbiol6:199–210 [CrossRef][PubMed]
    [Google Scholar]
  66. Sutherland I. W.. 2001; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147:3–9 [CrossRef]
    [Google Scholar]
  67. Theophilus P. A. S., Victoria M. J., Socarras K. M., Filush K. R., Gupta K., Luecke D. F., Sapi E.. 2015; Effectiveness of Stevia rebaudiana whole leaf extract against the various morphological forms of Borrelia burgdorferi in vitro. Eur J Microbiol Immunol 5:1–13[CrossRef]
    [Google Scholar]
  68. Tielen P., Strathmann M., Jaeger K. E., Flemming H. C., Wingender J.. 2005; Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res160:165–176 [CrossRef][PubMed]
    [Google Scholar]
  69. Timmaraju A., Theophilus P. A. S., Balasubramanian K., Shakih S., Leucke D. F., Sapi E.. 2015; Biofilm formation by Borrelia sensu lato. FEMS Microbiol Lett362:1–6[CrossRef]
    [Google Scholar]
  70. Villain-Simonnet A., Milas M., Rinaudo M.. 2000; A new bacterial polysaccharide (YAS34). I. Characterization of the conformations and conformational transition. Int J Biol Macromol27:65–75 [CrossRef][PubMed]
    [Google Scholar]
  71. Vu B., Chen M., Crawford R. J., Ivanova E. P.. 2009; Bacterial extracellular polysaccharides involved in biofilm formation. Molecules14:2535–2554 [CrossRef][PubMed]
    [Google Scholar]
  72. Wang G., van Dam A. P., Schwartz I., Dankert J.. 1999; Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev12:633–653[PubMed]
    [Google Scholar]
  73. Wang S., Liu X., Liu H., Zhang L., Guo Y., Yu S., Wozniak D. J., Ma L. Z.. 2015; The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ Microbiol Rep7:330–340 [CrossRef][PubMed]
    [Google Scholar]
  74. Weiss-Muszkat M., Shakh D., Zhou Y., Pinto R., Belausov E., Chapman M. R., Sela S.. 2010; Biofilm formation by and multicellular behavior of Escherichia coli O55:H7, an atypical enteropathogenic strain. Appl Environ Microbiol76:1545–1554 [CrossRef][PubMed]
    [Google Scholar]
  75. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S.. 2002; Extracellular DNA required for bacterial biofilm formation. Science295:1487 [CrossRef][PubMed]
    [Google Scholar]
  76. Yoong P., Cywes-Bentley C., Pier G. B.. 2012; Poly-N-acetylglucosamine expression by wild-type Yersinia pestis is maximal at mammalian, not flea, temperatures. MBio3:e00217-12 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000380
Loading
/content/journal/micro/10.1099/mic.0.000380
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error