1887

Abstract

The filamentous fungus Phycomyces blakesleeanus provides a renewable biosource of industrial high-value compounds such as carotenes, other isoprenoids (ubiquinone and sterols), organic acids and fatty acids. Several Phycomyces mutants involved in the formation of β-carotene are available. For example, the carA mutants have a leaky mutation in the phytoene synthase and produce significantly lower amounts of carotenes, while the carB and carR mutants produce phytoene and lycopene, respectively, due to a null mutation in the genes encoding the phytoene dehydrogenase and lycopene cyclase, respectively. The carS mutants are mutated in the gene encoding the oxygenase responsible for the conversion of β-carotene into apocarotenoids and, as a result, β-carotene accumulates. In order to ascertain further the biochemical changes arising in these potential industrial strains, a metabolite profiling workflow was implemented for Phycomyces. GC-MS and ultra-performance liquid chromatography–photodiode array platforms enabled the identification of over 100 metabolites in 11 carA, carB, carR and carS mutant strains and their wild-type comparator. All mutant strains possessed decreased TCA cycle intermediates, galactose, alanine and ribitol, while dodecanol and valine showed a general increase. As predicted, other terpenoid levels were affected in the carB, carR and carS mutants but not in the carA mutants. The global changes across intermediary metabolism of the mutants suggest that complex metabolic networks exist between intermediary and secondary metabolism or that other mutations beyond the carotene pathway may exist in these mutants. These data show the utility of the methodology in metabolically phenotyping Phycomyces strains with potential industrial exploitation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000376
2016-11-23
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1963.html?itemId=/content/journal/micro/10.1099/mic.0.000376&mimeType=html&fmt=ahah

References

  1. Arrach N., Fernández-Martín R., Cerdá-Olmedo E., Avalos J..( 2001;). A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. . Proc Natl Acad Sci USA 98: 1687–1692. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barrero A. F., Oltra J. E., Poyatos J. A., Jiménez D., Oliver E., Enrique Oltra J..( 1998;). Phycomysterols and other sterols from the fungus Phycomyces blakesleeanus. . J Nat Prod 61: 1491–1496. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrero A. F., Oltra J. E., Robinson J., Burke P. V., Jiménez D., Oliver E., Enrique Oltra J..( 2002;). Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects. . Steroids 67: 403–409. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bejarano E. R., Parra F., Murillo F. J., Cerd-Olmedo E..( 1988;). End-product regulation of carotenogenesis in Phycomyces. . Arch Microbiol 150: 209–214. [CrossRef]
    [Google Scholar]
  5. Benjamini Y., Hochberg Y..( 1995;). Controlling the false discovery rate: a practical and powerful approach to multiple testing. . JR Stat Soc Ser B 57: 289–300.
    [Google Scholar]
  6. Bergman K., Eslava A. P., Cerdá-Olmedo E..( 1973;). Mutants of Phycomyces with abnormal phototropism. . Mol Gen Genet 123: 1–16. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bino R. J., Hall R. D., Fiehn O., Kopka J., Saito K., Draper J., Nikolau B. J., Mendes P., Roessner-Tunali U. et al.( 2004;). Potential of metabolomics as a functional genomics tool. . Trends Plant Sci 9: 418–425. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cazzonelli C. I., Pogson B. J..( 2010;). Source to sink: regulation of carotenoid biosynthesis in plants. . Trends Plant Sci 15: 266–274. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cerdá-Olmedo E..( 1987;). Standard growth conditions and variations. . In Phycomyces , pp. 337–339. Edited by Cerdá-Olmedo E., Lipson E. D.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  10. Cerdá-Olmedo E..( 2001;). Phycomyces and the biology of light and color. . FEMS Microbiol Rev 25: 503–512. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cherubini F..( 2010;). The biorefinery concept: using biomass instead of oil for producing energy and chemicals. . Energy Convers Manage 51: 1412–1421. [CrossRef]
    [Google Scholar]
  12. Chichester C. O., Yokoyama H., Nakayama T. O., Lukton A., Mackinney G..( 1959;). Leucine metabolism and carotene biosynthesis. . J Biol Chem 234: 598–602.[PubMed]
    [Google Scholar]
  13. Clark J. H., Luque R., Matharu A. S..( 2012;). Green chemistry, biofuels, and biorefinery. . Annu Rev Chem Biomol Eng 3: 183–207. [CrossRef] [PubMed]
    [Google Scholar]
  14. Connor M. R., Atsumi S..( 2010;). Synthetic biology guides biofuel production. . J Biomed Biotechnol 2010: 1–9. [CrossRef]
    [Google Scholar]
  15. Corrochano L. M., Cerdá-Olmedo E..( 1992;). Sex, light and carotenes: the development of Phycomyces. . Trends Genet 8: 268–274. [CrossRef] [PubMed]
    [Google Scholar]
  16. Corrochano L. M., Kuo A., Marcet-Houben M., Polaino S., Salamov A., Villalobos-Escobedo J. M., Grimwood J., Álvarez M. I., Avalos J. et al.( 2016;). Expansion of signal transduction pathways in fungi by extensive genome duplication. . Curr Biol 26: 1577–1584. [CrossRef] [PubMed]
    [Google Scholar]
  17. DeBell R. M., Jack R. C..( 1975;). Stereospecific analysis of major glycerolipids of Phycomyces blakesleeanus sporangiophores and mycelium. . J Bacteriol 124: 220–224.[PubMed]
    [Google Scholar]
  18. Eslava A. P..( 1987;). Genetics. . In Phycomyces , pp. 27–48. Edited by Cerdá-Olmedo E., Lipson E. D.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  19. Eslava A. P., Cerdá-Olmedo E..( 1974;). Genetic control of phytoene dehydrogenation in Phycomyces. . Plant Sci Lett 2: 9–14. [CrossRef]
    [Google Scholar]
  20. Fesenko E., Edwards R..( 2014;). Plant synthetic biology: a new platform for industrial biotechnology. . J Exp Bot 65: 1927–1937. [CrossRef] [PubMed]
    [Google Scholar]
  21. Goodwin T. W., Lijinsky W..( 1951;). Studies in carotenogenesis. II. Carotene production by Phycomyces blakesleeanus: the effect of different amino acids when used in media containing low concentrations of glucose. . Biochem J 50: 268–273. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gruszecki W. I., Strzałka K..( 2005;). Carotenoids as modulators of lipid membrane physical properties. . Biochim Biophys Acta 1740: 108–115. [CrossRef] [PubMed]
    [Google Scholar]
  23. Halket J. M., Waterman D., Przyborowska A. M., Patel R. K., Fraser P. D., Bramley P. M..( 2005;). Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. . J Exp Bot 56: 219–243. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hilgenberg W., Burke P. V., Sandmann G..( 1987;). Metabolic pathways. . In Phycomyces , pp. 155–198. Edited by Cerdá-Olmedo E., Lipson E. D.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  25. Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K. F., Itoh M., Kawashima S., Katayama T., Araki M., Hirakawa M..( 2006;). From genomics to chemical genomics: new developments in KEGG. . Nucleic Acids Res 34: D354–D357. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kuzina V., Cerdá-Olmedo E..( 2007;). Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces. . Appl Microbiol Biotechnol 76: 991–999. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kuzina V., Domenech C., Cerdá-Olmedo E..( 2006;). Relationships among the biosyntheses of ubiquinone, carotene, sterols, and triacylglycerols in Zygomycetes. . Arch Microbiol 186: 485–493. [CrossRef] [PubMed]
    [Google Scholar]
  28. Medina H. R..( 2013;). Biosíntesis de apocarotenoides en Phycomyces blakesleeanus. .
  29. Medina H. R., Cerdá-Olmedo E., Al-Babili S..( 2011;). Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. . Mol Microbiol 82: 199–208. [CrossRef] [PubMed]
    [Google Scholar]
  30. Meissner G., Delbruck M..( 1968;). Carotenes and retinal in Phycomyces mutants. . Plant Physiol 43: 1279–1283. [CrossRef] [PubMed]
    [Google Scholar]
  31. Murillo F. J., Cerdá-Olmedo E..( 1976;). Regulation of carotene synthesis in Phycomyces. . Mol Gen Genet 148: 19–24. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ootaki T., Lighty A. C., Delbrück M., Hsu W. J..( 1973;). Complementation between mutants of Phycomyces deficient with respect to carotenogenesis. . Mol Gen Genet 121: 57–70. [CrossRef] [PubMed]
    [Google Scholar]
  33. Perez-Fons L., Bramley P. M., Fraser P. D..( 2014;). The optimisation and application of a metabolite profiling procedure for the metabolic phenotyping of Bacillus species. . Metabolomics 10: 77–90. [CrossRef]
    [Google Scholar]
  34. Riley G. J., Bramley P. M..( 1976;). The subcellular distribution of carotenoids in Phycomyces blakesleeanus C115 car-42 mad-107(−). . Biochim 450: 429–440. [CrossRef]
    [Google Scholar]
  35. Riley G. J., Bramley P. M..( 1982;). Biosynthesis of carotenes in cell organelles of Phycomyces blakesleeanus C115 carS42 mad-107(−). . Cytobios 34: 97–104.
    [Google Scholar]
  36. Ruiz-Albert J., Cerdá-Olmedo E., Corrochano L. M..( 2002;). Genes for mevalonate biosynthesis in Phycomyces. . Mol Genet Genomics 266: 768–777. [CrossRef] [PubMed]
    [Google Scholar]
  37. Sumner L. W., Amberg A., Barrett D., Beale M. H., Beger R., Daykin C. A., Fan T. W.-M., Fiehn O., Goodacre R. et al.( 2007;). Proposed minimum reporting standards for chemical analysis. . Metabolomics 3: 211–221. [CrossRef]
    [Google Scholar]
  38. Sutter R. P..( 1975;). Mutations affecting sexual development in Phycomyces blakesleeanus. . Proc Natl Acad Sci USA 72: 127–130. [CrossRef] [PubMed]
    [Google Scholar]
  39. Tagua V. G., Medina H. R., Martín-Domínguez R., Eslava A. P., Corrochano L. M., Cerdá-Olmedo E., Idnurm A..( 2012;). A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. . Fungal Genet Biol 49: 398–404. [CrossRef] [PubMed]
    [Google Scholar]
  40. Torres-Martínez S., Murillo F. J., Cerdá-Olmedo E..( 1980;). Genetics of lycopene cyclization and substrate transfer in beta-carotene biosynthesis in Phycomyces. . Genet Res 36: 299–309. [CrossRef] [PubMed]
    [Google Scholar]
  41. van den Berg R. A., Hoefsloot H. C., Westerhuis J. A., Smilde A. K., van der Werf M. J..( 2006;). Centering, scaling, and transformations: improving the biological information content of metabolomics data. . BMC Genomics 7: 142. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zalokar M..( 1969;). Intracellular centrifugal separation of organelles in Phycomyces. . J Cell Biol 41: 494–509.[PubMed] [CrossRef]
    [Google Scholar]
  43. Zaripheh S., Nara T. Y., Nakamura M. T., Erdman J. W..( 2006;). Dietary lycopene downregulates carotenoid 15,15'-monooxygenase and PPAR-gamma in selected rat tissues. . J Nutr 136: 932–938.[PubMed]
    [Google Scholar]
  44. Zycha H., Siepmann R., Linnemann G..( 1969;). Mucorales. Eine Beschreibung Aller Gattungen Und Arten Dieser Pilzgruppe, Von H. Zycha Und R. Siepmann. Mit Einem Beitrag Zur Gattung Mortierella Von G. Linnemann. Lehre:: J. Cramer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000376
Loading
/content/journal/micro/10.1099/mic.0.000376
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error