1887

Abstract

The entomopathogenic fungus, , is a microbial biological control agent capable of infecting a wide range of insect hosts. Conidia (spores) initiate infection via adhesion, growth and penetration of the insect cuticle, whose outmost layer is rich in lipids. Conidial virulence was investigated in WT and caleosin mutants (Δ), the latter a protein involved in lipid storage and turnover. Topical insect bioassays revealed that conidia of the WT strain showed up to 40-fold differences in LD values depending upon the growth substrate. The most virulent conidia were harvested from potato dextrose agar containing oleic acid, and the least potent were those derived from Sabouraud dextrose/yeast extract agar (SDAY). However, with the exception of conidia derived from SDAY and Czapek Dox agar, in which values were reduced, mean lethal times to kill (LT) were essentially unaffected. In topical bioassays, the Δ mutant displayed LD values 5–40-fold higher than the WT depending upon the growth substrate, with Δ conidia derived from SDAY unable to effectively penetrate the host cuticle. The Δ mutant also showed concomitant dramatic increases in LT values from a mean of ~4.5 for WT to >8.5 days for the mutant. In contrast, intrahaemocoel injection bioassays that bypass cuticle penetration events revealed only minor effects on virulence for either WT or Δ conidia. These data highlight the importance of caleosin-dependent lipid mobilization and/or signalling in cuticle penetration events but suggest their dispensability for immune evasion and within-host growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000375
2016-11-23
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1913.html?itemId=/content/journal/micro/10.1099/mic.0.000375&mimeType=html&fmt=ahah

References

  1. Asakura M., Yoshino K., Hill A. M., Kubo Y., Sakai Y., Takano Y.. 2012; Primary and secondary metabolism regulates lipolysis in appressoria of Colletotrichum orbiculare. Fungal Genet Biol49:967–975[CrossRef]
    [Google Scholar]
  2. Charnley A. K.. 2003; Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res40:241–321[CrossRef]
    [Google Scholar]
  3. Crespo R., Juarez M. P., Cafferata L. F. R.. 2000; Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia92:528–536[CrossRef]
    [Google Scholar]
  4. Crespo R., Juarez M. P., Dal Bello G. M., Padin S., Fernandez G. C., Pedrini N.. 2002; Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. Biocontrol47:685–696[CrossRef]
    [Google Scholar]
  5. Crespo R., Pedrini N., Juarez M. P., Dal Bello G. M.. 2008; Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res163:148–151[CrossRef]
    [Google Scholar]
  6. de Crecy E., Jaronski S., Lyons B., Lyons T. J., Keyhani N. O.. 2009; Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol9:74 [CrossRef][PubMed]
    [Google Scholar]
  7. Duan Z. B., Chen Y. X, Huang W., Shang Y. F., Chen P. L., Wang C. S.. 2013; Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy9:538–549[CrossRef]
    [Google Scholar]
  8. Fan Y., Ortiz-Urquiza A., Garrett T., Pei Y., Keyhani N. O.. 2015; Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, Beauveria bassiana. Environ Microbiol17:4600–4614[CrossRef]
    [Google Scholar]
  9. Faria M., Hotchkiss J. H., Wraight S. P.. 2012; Application of modified atmosphere packaging (gas flushing and active packaging) for extending the shelf life of Beauveria bassiana conidia at high temperatures. Biol Control61:78–88[CrossRef]
    [Google Scholar]
  10. Folch J., Lees M., Stanley G. H. S.. 1957; A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem226:497–509
    [Google Scholar]
  11. Gao Q., Shang Y. F., Huang W., Wang C. S.. 2013; Glycerol-3-phosphate acyltransferase contributes to triacylglycerol biosynthesis, lipid droplet formation, and host invasion in Metarhizium robertsii. Appl Environ Microbiol79:7646–7653[CrossRef]
    [Google Scholar]
  12. Glare T., Caradus J., Gelernter W., Jackson T., Keyhani N., Kohl J., Marrone P., Morin L., Stewart A.. 2012; Have biopesticides come of age?. Trends Biotechnol30:250–258[CrossRef]
    [Google Scholar]
  13. Golebiowski M., Bogus M. I, Paszkiewicz M., Stepnowski P.. 2011; Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Anal Bioanal Chem399:3177–3191[CrossRef]
    [Google Scholar]
  14. Hanano A., Burcklen M., Flenet M., Ivancich A., Louwagie M., Garin J., Blee E.. 2006; Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem281:33140–33151[CrossRef]
    [Google Scholar]
  15. Hanano A., Almousally I., Shaban M., Blee E.. 2015; A caleosin-like protein with peroxygenase activity mediates Aspergillus flavus development, aflatoxin accumulation, and seed infection. Appl Environ Microbiol81:6129–6144[CrossRef]
    [Google Scholar]
  16. Holder D. J., Keyhani N. O.. 2005; Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol71:5260–5266[CrossRef]
    [Google Scholar]
  17. Holder D. J., Kirkland B. H., Lewis M. W., Keyhani N. O.. 2007; Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology153:3448–3457 [CrossRef]
    [Google Scholar]
  18. Jarrold S. L., Moore D., Potter U., Charnley A. K.. 2007; The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycol Res111:240–249[CrossRef]
    [Google Scholar]
  19. Jin X. X, Huang Y. B., Thomson S. J., Elliott R. B.. 2013; Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system. Biocontrol Sci Technol23:362–366[CrossRef]
    [Google Scholar]
  20. Kim J. J., Xie L., Han J. H., Lee S. Y.. 2014; Influence of additives on the yield and pathogenicity of conidia produced by solid state cultivation of an Isaria javanica isolate. Mycobiology42:346–352[CrossRef]
    [Google Scholar]
  21. Lacey L. A., Grzywacz D., Shapiro-Ilan D. I, Frutos R., Brownbridge M., Goettel M. S.. 2015; Insect pathogens as biological control agents: back to the future. J Invertebr Pathol132:1–41[CrossRef]
    [Google Scholar]
  22. Lecuona R., Clement J. L., Riba G., Joulie C., Juarez P.. 1997; Spore germination and hyphal growth of Beauveria sp on insect lipids. J Econ Entomol90:119–123[CrossRef]
    [Google Scholar]
  23. Maldonado-Blanco M. G., Gallegos-Sandoval J. L., Fernandez-Pena G., Sandoval-Coronado C. F., Elias-Santos M.. 2014; Effect of culture medium on the production and virulence of submerged spores of Metarhizium anisopliae and Beauveria bassiana against larvae and adults of Aedes aegypti (Diptera: Culicidae). Biocontrol Sci Technol24:180–189[CrossRef]
    [Google Scholar]
  24. Mascarin G. M., Kobori N. N., Quintela E. D., Delalibera I.. 2013; The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biol Control66:209–218[CrossRef]
    [Google Scholar]
  25. Mascarin G. M., Jackson M. A., Kobori N. N., Behle R. W., Delalibera I.. 2015; Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and Isaria fumosorosea strains. J Invertebr Pathol127:11–20[CrossRef]
    [Google Scholar]
  26. Murphy D. J.. 2012; The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma249:541–585 [CrossRef][PubMed]
    [Google Scholar]
  27. Naested H., Frandsen G. I, Jauh G. Y., Hernandez-Pinzon I., Nielsen H. B., Murphy D. J., Rogers J. C., Mundy J.. 2000; Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol44:463–476[CrossRef]
    [Google Scholar]
  28. Ortiz-Urquiza A., Keyhani N. O.. 2013; Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects4:357–374[CrossRef]
    [Google Scholar]
  29. Ortiz-Urquiza A., Keyhani N. O.. 2016; Molecular genetics of Beauveria bassiana infection of insects. Adv Genet94:165–249
    [Google Scholar]
  30. Partridge M., Murphy D. J.. 2009; Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem47:796–806[CrossRef]
    [Google Scholar]
  31. Pedrini N., Juarez M. P., Crespo R., de Alaniz M. J. T.. 2006; Clues on the role of Beauveria bassiana catalases in alkane degradation events. Mycologia98:528–534[CrossRef]
    [Google Scholar]
  32. Pedrini N., Crespo R., Juárez M. P.. 2007; Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol 146:124–137 [CrossRef][PubMed]
    [Google Scholar]
  33. Pedrini N., Zhang S., Juarez M. P., Keyhani N. O.. 2010; Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology156:2549–2557 [CrossRef]
    [Google Scholar]
  34. Pedrini N., Ortiz-Urquiza A., Huarte-Bonnet C., Zhang S., Keyhani N. O.. 2013; Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol4:24 [CrossRef][PubMed]
    [Google Scholar]
  35. Pedrini N., Ortiz-Urquiza A., Huarte-Bonnet C., Fan Y., Juárez M. P., Keyhani N. O.. 2015; Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc Natl Acad Sci U S A112:E3651E3660 [CrossRef][PubMed]
    [Google Scholar]
  36. Pelizza S. A., Cabello M. N., Tranchida M. C., Scorsetti A. C., Bisaro V.. 2011; Screening for a culture medium yielding optimal colony growth, zoospore yield and infectivity of different isolates of Leptolegnia chapmanii (Straminipila: Peronosporomycetes). Ann Microbiol61:991–997[CrossRef]
    [Google Scholar]
  37. Qin Y., Ortiz-Urquiza A., Keyhani N. O.. 2014; A putative methyltransferase, mtrA, contributes to development, spore viability, protein secretion and virulence in the entomopathogenic fungus Beauveria bassiana. Microbiology160:2526–2537 [CrossRef]
    [Google Scholar]
  38. Rangel D. E. N., Alston D. G., Roberts D. W.. 2008; Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res112:1355–1361[CrossRef]
    [Google Scholar]
  39. Rodriguez-Gomez D., Loera O., Saucedo-Castaneda G., Viniegra-Gonzalez G.. 2009; Substrate influence on physiology and virulence of Beauveria bassiana acting on larvae and adults of Tenebrio molitor. World J Microbiol Biotechnol25:513–518[CrossRef]
    [Google Scholar]
  40. Rosas-Garcia N. M., Avalos-de-Leon O., Villegas-Mendoza J. M., Mireles-Martinez M., Barboza-Corona J. E., Castaneda-Ramirez J. C.. 2014; Correlation between pr1 and pr2 gene content and virulence in Metarhizium anisopliae strains. J Microbiol Biotechn24:1495–1502[CrossRef]
    [Google Scholar]
  41. Roy H. E., Steinkraus D. C., Eilenberg J., Hajek A. E., Pell J. K.. 2006; Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol51:331–357[CrossRef]
    [Google Scholar]
  42. Sadat M. A., Jeon J., Mir A. A., Choi J., Choi J., Lee Y. H, Abu Sadat M.. 2014; Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae. PLoS One9:e100726 [CrossRef][PubMed]
    [Google Scholar]
  43. Safavi S. A., Shah F. A., Pakdel A. K., Rasoulian G. R., Bandani A. R., Butt T. M.. 2007; Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol Lett270:116–123[CrossRef]
    [Google Scholar]
  44. Santoro P. H., Neves P. M. O. J., Alexandre T. M., Alves L. F. A.. 2007; Interference of bioassay methods on the results of entomopathogenic fungi selection for insect control. Pesqui Agropecu Bras42:483–489[CrossRef]
    [Google Scholar]
  45. Toledo A., Alippi A. M., de Remes Lenicov A. M, Lenicov A. M. M. D.. 2011; Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens. J Insect Sci11:1–13 [CrossRef][PubMed]
    [Google Scholar]
  46. Tragust S., Mitteregger B., Barone V., Konrad M., Ugelvig L. V, Cremer S.. 2013; Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol23:76–82[CrossRef]
    [Google Scholar]
  47. Ulmer C. Z., Yost R. A., Chen J., Mathews C. E., Garrett T. J.. 2015; Liquid chromatography-mass spectrometry metabolic and lipidomic sample preparation workflow for suspension-cultured mammalian cells using Jurkat T lymphocyte cells. J Proteomics Bioinform8:126–132[CrossRef]
    [Google Scholar]
  48. Wang C. S., Leger R. J. S.. 2007; The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem282:21110–21115[CrossRef]
    [Google Scholar]
  49. Welte M. A.. 2015; Expanding roles for lipid droplets. Curr Biol25:R470–R481[CrossRef]
    [Google Scholar]
  50. Wu J. H., Ali S., Huang Z., Ren S. X, Cai S. J.. 2010; Media composition influences growth, enzyme activity and virulence of the entomopathogen Metarhizium anisopliae (Hypocreales: Clavicipitaceae). Pak J Zool42:451–459
    [Google Scholar]
  51. Yanagawa A., Shimizu S.. 2007; Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. Biocontrol52:75–85[CrossRef]
    [Google Scholar]
  52. Zhang S., Widemann E., Bernard G., Lesot A., Pinot F., Pedrini N., Keyhani N. O.. 2012; CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J Biol Chem287:13477–13486[CrossRef]
    [Google Scholar]
  53. Zhang S. Z., Xia Y. X, Kim B., Keyhani N. O.. 2011; Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol80:811–826[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000375
Loading
/content/journal/micro/10.1099/mic.0.000375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error