1887

Abstract

In Saccharomyces cerevisiae, Adr1 is a zinc-finger transcription factor involved in the transcriptional activation of ADH2. Deletion of KlADR1, its putative ortholog in Kluyveromyces lactis, led to reduced growth in glycerol, oleate and yeast extract-peptone medium suggesting, as in S. cerevisiae, its requirement for glycerol, fatty acid and nitrogen utilization. Moreover, growth comparison on yeast extract and peptone plates showed in K. lactis a KlAdr1-dependent growth trait not present in S. cerevisiae, indicating different metabolic roles of the two factors in their environmental niches. KlADR1 is required for growth under respiratory and fermentative conditions like Kl ADH, alcohol dehydrogenase genes necessary for metabolic adaptation during the growth transition. Using in-gel native alcohol dehydrogenase assay, we showed that this factor affected the Adh pattern by altering the balance between these activities. Since the activity most affected by KlAdr1 is KlAdh3, a deletion analysis of the KlADH3 promoter allowed the isolation of a DNA fragment through which KlAdr1 modulated its expression. The expression of the KlADR1-GFP gene allowed the intracellular localization of the factor in K. lactis and S. cerevisiae, suggesting in the two yeasts a common mechanism of KlAdr1 translocation under fermentative and respiratory conditions. Finally, the chimeric Kl/ScADR1 gene encoding the zinc-finger domains of KlAdr1 fused to the transactivating domains of the S. cerevisiae factor activated in Sc adr1 Δ the transcription of ADH2 in a ScAdr1-dependent fashion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000374
2016-11-23
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1933.html?itemId=/content/journal/micro/10.1099/mic.0.000374&mimeType=html&fmt=ahah

References

  1. Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., Ren J., Li W. W., Noble W. S..( 2009;). MEME SUITE: tools for motif discovery and searching. . Nucleic Acids Res 37: W202–W208. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bakker B. M., Bro C., Kötter P., Luttik M. A., van Dijken J. P., Pronk J. T..( 2000;). The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. . J Bacteriol 182: 4730–4737. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bemis L. T., Denis C. L..( 1988;). Identification of functional regions in the yeast transcriptional activator ADR1. . Mol Cell Biol 8: 2125–2131. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bennetzen J. L., Hall B. D..( 1982;). The prymary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. . J Biol Chem 257: 3018–3025.[PubMed]
    [Google Scholar]
  5. Bozzi A., Saliola M., Falcone C., Bossa F., Martini F..( 1997;). Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis. . Biochim Biophys Acta 1339: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bussereau F., Casaregola S., Lafay J. F., Bolotin-Fukuhara M..( 2006;). The Kluyveromyces lactis repertoire of transcriptional regulators. . FEMS Yeast Res 6: 325–335. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cherry J. R., Denis C. L..( 1989;). Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome. . Curr Genet 15: 311–317. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cialfi S., Uccelletti D., Carducci A., Wésolowski-Louvel M., Mancini P., Heipieper H. J., Saliola M..( 2011;). KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis. . Microbiology 157: 1509–1518. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ciriacy M..( 1975;). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH II. . Mol Gen Genet 138: 157–164.[PubMed] [CrossRef]
    [Google Scholar]
  10. Ciriacy M..( 1979;). Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. . Mol Gen Genet 176: 427–431. [CrossRef] [PubMed]
    [Google Scholar]
  11. De Deken R. H..( 1966;). The Crabtree effect: a regulatory system in yeast. . J Gen Microbiol 44: 149–156. [CrossRef] [PubMed]
    [Google Scholar]
  12. Denis C. L., Young E. T..( 1983;). Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae. . Mol Cell Biol 3: 360–370. [CrossRef] [PubMed]
    [Google Scholar]
  13. Denis C. L., Ciriacy M., Young E. T..( 1981;). A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. . J Mol Biol 148: 355–368. [CrossRef] [PubMed]
    [Google Scholar]
  14. Denis C. L., Fontaine S. C., Chase D., Kemp B. E., Bemis L. T..( 1992;). ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. . Mol Cell Biol 12: 1507–1514. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dickinson J. R., Salgado L. E., Hewlins M. J..( 2003;). The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. . J Biol Chem 278: 8028–8034. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuvéglise C. et al.( 2004;). Genome evolution in yeasts. . Nature 430: 35–44. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ferrero I., Viola A. M., Goffeau A..( 1981;). Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis. . Antonie Van Leeuwenhoek 47: 11–24. [CrossRef] [PubMed]
    [Google Scholar]
  18. Goffrini P., Algeri A. A., Donnini C., Wesolowski-Louvel M., Ferrero I..( 1989;). RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for the growth on sugars. . Yeast 5: 99–106. [CrossRef] [PubMed]
    [Google Scholar]
  19. González-Siso M. I., Freire-Picos M. A., Ramil E., González-Domínguez M., Rodríguez Torres A., Cerdán M. E..( 2000;). Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. . Enzyme Microb Technol 26: 699–705.[PubMed] [CrossRef]
    [Google Scholar]
  20. Heipieper H. J., Isken S., Saliola M..( 2000;). Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. . Res Microbiol 151: 777–784. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hohmann S..( 2002;). Osmotic stress signaling and osmoadaptation in yeasts. . Microbiol Mol Biol Rev 66: 300–372. [CrossRef] [PubMed]
    [Google Scholar]
  22. Huh W. K., Falvo J. V., Gerke L. C., Carroll A. S., Howson R. W., Weissman J. S., O'Shea E. K..( 2003;). Global analysis of protein localization in budding yeast. . Nature 425: 686–691. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kaiser C., Michaelis S., Mitchell A..( 1994;). Methods in Yeast Genetics. New York:: Cold Spring Harbour Laboratory Press;.
    [Google Scholar]
  24. Lemaire M., Wésolowski-Louvel M..( 2004;). Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis. . Genetics 168: 723–731. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lutstorf U., Megnet R..( 1968;). Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4. . Arch Biochem Biophys 126: 933–944.[PubMed] [CrossRef]
    [Google Scholar]
  26. Mazzoni C., Saliola M., Falcone C..( 1992;). Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. . Mol Microbiol 6: 2279–2286. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mazzoni C., Santori F., Saliola M., Falcone C..( 2000;). Molecular analysis of UASE, a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis. . Res Microbiol 151: 19–28. [CrossRef] [PubMed]
    [Google Scholar]
  28. Moreno-Cermeño A., Alsina D., Cabiscol E., Tamarit J., Ros J..( 2013;). Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1. . Biochim Biophys Acta 1833: 3326–3337. [CrossRef] [PubMed]
    [Google Scholar]
  29. Overkamp K. M., Bakker B. M., Steensma H. Y., van Dijken J. P., Pronk J. T..( 2002;). Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. . Yeast 19: 813–624. [CrossRef] [PubMed]
    [Google Scholar]
  30. Parks L. W., Smith S. J., Crowley J. H..( 1995;). Biochemical and physiological effects of sterol alterations in yeast – a review. . Lipids 30: 227–230. [CrossRef] [PubMed]
    [Google Scholar]
  31. Parua P. K., Ratnakumar S., Braun K. A., Dombek K. M., Arms E., Ryan P. M., Young E. T..( 2010;). 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. . Mol Cell Biol 30: 5273–5283. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rodicio R., Heinisch J. J..( 2013;). Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. . Yeast 30: 165–177. [CrossRef] [PubMed]
    [Google Scholar]
  33. Saliola M., Falcone C..( 1995;). Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation. . Mol Gen Genet 249: 665–672. [CrossRef] [PubMed]
    [Google Scholar]
  34. Saliola M., Shuster J. R., Falcone C..( 1990;). The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. . Yeast 6: 193–204. [CrossRef] [PubMed]
    [Google Scholar]
  35. Saliola M., Gonnella R., Mazzoni C., Falcone C..( 1991;). Two genes encoding putative mitochondrial alcohol dehydrogenases are present in the yeast Kluyveromyces lactis. . Yeast 7: 391–401. [CrossRef] [PubMed]
    [Google Scholar]
  36. Saliola M., Mazzoni C., Solimando N., Crisà A., Falcone C., Jung G., Fleer R..( 1999;). Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis. . Appl Environ Microbiol 65: 53–60.[PubMed]
    [Google Scholar]
  37. Saliola M., De Maria I., Lodi T., Fiori A., Falcone C..( 2006;). KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactis. . FEMS Yeast Res 6: 1184–1192. [CrossRef] [PubMed]
    [Google Scholar]
  38. Saliola M., Getuli C., Mazzoni C., Fantozzi I., Falcone C..( 2007;). A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. . FEMS Yeast Res 7: 693–701. [CrossRef] [PubMed]
    [Google Scholar]
  39. Saliola M., Sponziello M., D'Amici S., Lodi T., Falcone C..( 2008;). Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. . FEMS Yeast Res 8: 697–705. [CrossRef] [PubMed]
    [Google Scholar]
  40. Saliola M., D'Amici S., Sponziello M., Mancini P., Tassone P., Falcone C..( 2010;). The transdehydrogenase genes KlNDE1 and KlNDI1 regulate the expression of KlGUT2 in the yeast Kluyveromyces lactis. . FEMS Yeast Res 10: 518–526. [CrossRef] [PubMed]
    [Google Scholar]
  41. Saliola M., Tramonti A., Lanini C., Cialfi S., De Biase D., Falcone C..( 2012;). Intracellular NADPH levels affect the oligomeric state of the glucose 6-phosphate dehydrogenase, Eukaryot. . Cell 11: 1503–1511.
    [Google Scholar]
  42. Shain D., Salvadore C., Denis C..( 1992;). Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. . Mol Gen Genet 232: 478–488. [CrossRef]
    [Google Scholar]
  43. Shuster J., Yu J., Cox D., Chan R. V., Smith M., Young E..( 1986;). ADR1-mediated regulation of ADH2 requires an inverted repeat sequence. . Mol Cell Biol 6: 1894–1902. [CrossRef] [PubMed]
    [Google Scholar]
  44. Simon M., Adam G., Rapatz W., Spevak W., Ruis H..( 1991;). The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. . Mol Cell Biol 11: 699–704. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sloan J. S., Dombek K. M., Young E. T..( 1999;). Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. . J Biol Chem 274: 37575–37582. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tachibana C., Yoo J. Y., Tagne J. B., Kacherovsky N., Lee T. I., Young E. T..( 2005;). Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. . Mol Cell Biol 25: 2138–2146. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wésolowski-Louvel M., Prior C., Bornecque D., Fukuhara H..( 1992;). Rag mutations involved in glucose metabolism in yeast: isolation and genetic characterization. . Yeast 8: 711–719. [CrossRef]
    [Google Scholar]
  48. Yaffe M. P..( 1995;). Isolation and analysis of mitochondrial inheritance mutants from Saccharomyces cerevisiae. . Methods Enzymol 260: 447–453.[PubMed] [CrossRef]
    [Google Scholar]
  49. Young E. T., Paquin D..( 1985;). Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. . Mol Cell Biol 5: 3024–3034. [CrossRef] [PubMed]
    [Google Scholar]
  50. Young E. T., Saario J., Kacherovsky N., Chao A., Sloan J. S., Dombek K. M..( 1998;). Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. . J Biol Chem 273: 32080–32087. [CrossRef] [PubMed]
    [Google Scholar]
  51. Young E. T., Dombek K. M., Tachibana C., Ideker T..( 2003;). Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. . J Biol Chem 278: 26146–26158. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000374
Loading
/content/journal/micro/10.1099/mic.0.000374
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error