1887

Abstract

In , Adr1 is a zinc-finger transcription factor involved in the transcriptional activation of . Deletion of , its putative ortholog in , led to reduced growth in glycerol, oleate and yeast extract-peptone medium suggesting, as in , its requirement for glycerol, fatty acid and nitrogen utilization. Moreover, growth comparison on yeast extract and peptone plates showed in a KlAdr1-dependent growth trait not present in indicating different metabolic roles of the two factors in their environmental niches. is required for growth under respiratory and fermentative conditions like , alcohol dehydrogenase genes necessary for metabolic adaptation during the growth transition. Using in-gel native alcohol dehydrogenase assay, we showed that this factor affected the Adh pattern by altering the balance between these activities. Since the activity most affected by KlAdr1 is KlAdh3, a deletion analysis of the promoter allowed the isolation of a DNA fragment through which KlAdr1 modulated its expression. The expression of the gene allowed the intracellular localization of the factor in and suggesting in the two yeasts a common mechanism of KlAdr1 translocation under fermentative and respiratory conditions. Finally, the chimeric gene encoding the zinc-finger domains of KlAdr1 fused to the transactivating domains of the factor activated in the transcription of in a ScAdr1-dependent fashion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000374
2016-11-23
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1933.html?itemId=/content/journal/micro/10.1099/mic.0.000374&mimeType=html&fmt=ahah

References

  1. Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., Ren J., Li W. W., Noble W. S.. 2009; MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res37:W202–W208 [CrossRef][PubMed]
    [Google Scholar]
  2. Bakker B. M., Bro C., Kötter P., Luttik M. A., van Dijken J. P., Pronk J. T.. 2000; The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol182:4730–4737 [CrossRef][PubMed]
    [Google Scholar]
  3. Bemis L. T., Denis C. L.. 1988; Identification of functional regions in the yeast transcriptional activator ADR1. Mol Cell Biol8:2125–2131 [CrossRef][PubMed]
    [Google Scholar]
  4. Bennetzen J. L., Hall B. D.. 1982; The prymary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. J Biol Chem257:3018–3025[PubMed]
    [Google Scholar]
  5. Bozzi A., Saliola M., Falcone C., Bossa F., Martini F.. 1997; Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis. Biochim Biophys Acta1339:133–142 [CrossRef][PubMed]
    [Google Scholar]
  6. Bussereau F., Casaregola S., Lafay J. F., Bolotin-Fukuhara M.. 2006; The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res6:325–335 [CrossRef][PubMed]
    [Google Scholar]
  7. Cherry J. R., Denis C. L.. 1989; Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome. Curr Genet15:311–317 [CrossRef][PubMed]
    [Google Scholar]
  8. Cialfi S., Uccelletti D., Carducci A., Wésolowski-Louvel M., Mancini P., Heipieper H. J., Saliola M.. 2011; KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis. Microbiology157:1509–1518 [CrossRef][PubMed]
    [Google Scholar]
  9. Ciriacy M.. 1975; Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH II. Mol Gen Genet138:157–164[PubMed][CrossRef]
    [Google Scholar]
  10. Ciriacy M.. 1979; Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol Gen Genet176:427–431 [CrossRef][PubMed]
    [Google Scholar]
  11. De Deken R. H.. 1966; The Crabtree effect: a regulatory system in yeast. J Gen Microbiol44:149–156 [CrossRef][PubMed]
    [Google Scholar]
  12. Denis C. L., Young E. T.. 1983; Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae. Mol Cell Biol3:360–370 [CrossRef][PubMed]
    [Google Scholar]
  13. Denis C. L., Ciriacy M., Young E. T.. 1981; A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J Mol Biol148:355–368 [CrossRef][PubMed]
    [Google Scholar]
  14. Denis C. L., Fontaine S. C., Chase D., Kemp B. E., Bemis L. T.. 1992; ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol Cell Biol12:1507–1514 [CrossRef][PubMed]
    [Google Scholar]
  15. Dickinson J. R., Salgado L. E., Hewlins M. J.. 2003; The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem278:8028–8034 [CrossRef][PubMed]
    [Google Scholar]
  16. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuvéglise C. et al. 2004; Genome evolution in yeasts. Nature430:35–44 [CrossRef][PubMed]
    [Google Scholar]
  17. Ferrero I., Viola A. M., Goffeau A.. 1981; Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis. Antonie Van Leeuwenhoek47:11–24 [CrossRef][PubMed]
    [Google Scholar]
  18. Goffrini P., Algeri A. A., Donnini C., Wesolowski-Louvel M., Ferrero I.. 1989; RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for the growth on sugars. Yeast5:99–106 [CrossRef][PubMed]
    [Google Scholar]
  19. González-Siso M. I., Freire-Picos M. A., Ramil E., González-Domínguez M., Rodríguez Torres A., Cerdán M. E.. 2000; Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb Technol26:699–705[PubMed][CrossRef]
    [Google Scholar]
  20. Heipieper H. J., Isken S., Saliola M.. 2000; Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. Res Microbiol151:777–784 [CrossRef][PubMed]
    [Google Scholar]
  21. Hohmann S.. 2002; Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev66:300–372 [CrossRef][PubMed]
    [Google Scholar]
  22. Huh W. K., Falvo J. V., Gerke L. C., Carroll A. S., Howson R. W., Weissman J. S., O'Shea E. K.. 2003; Global analysis of protein localization in budding yeast. Nature425:686–691 [CrossRef][PubMed]
    [Google Scholar]
  23. Kaiser C., Michaelis S., Mitchell A.. 1994; Methods in Yeast Genetics New York: Cold Spring Harbour Laboratory Press;
    [Google Scholar]
  24. Lemaire M., Wésolowski-Louvel M.. 2004; Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis. Genetics168:723–731 [CrossRef][PubMed]
    [Google Scholar]
  25. Lutstorf U., Megnet R.. 1968; Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4. Arch Biochem Biophys126:933–944[PubMed][CrossRef]
    [Google Scholar]
  26. Mazzoni C., Saliola M., Falcone C.. 1992; Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. Mol Microbiol6:2279–2286 [CrossRef][PubMed]
    [Google Scholar]
  27. Mazzoni C., Santori F., Saliola M., Falcone C.. 2000; Molecular analysis of UASE, a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis. Res Microbiol151:19–28 [CrossRef][PubMed]
    [Google Scholar]
  28. Moreno-Cermeño A., Alsina D., Cabiscol E., Tamarit J., Ros J.. 2013; Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1. Biochim Biophys Acta1833:3326–3337 [CrossRef][PubMed]
    [Google Scholar]
  29. Overkamp K. M., Bakker B. M., Steensma H. Y., van Dijken J. P., Pronk J. T.. 2002; Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Yeast19:813–624 [CrossRef][PubMed]
    [Google Scholar]
  30. Parks L. W., Smith S. J., Crowley J. H.. 1995; Biochemical and physiological effects of sterol alterations in yeast – a review. Lipids30:227–230 [CrossRef][PubMed]
    [Google Scholar]
  31. Parua P. K., Ratnakumar S., Braun K. A., Dombek K. M., Arms E., Ryan P. M., Young E. T.. 2010; 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol30:5273–5283 [CrossRef][PubMed]
    [Google Scholar]
  32. Rodicio R., Heinisch J. J.. 2013; Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast30:165–177 [CrossRef][PubMed]
    [Google Scholar]
  33. Saliola M., Falcone C.. 1995; Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation. Mol Gen Genet249:665–672 [CrossRef][PubMed]
    [Google Scholar]
  34. Saliola M., Shuster J. R., Falcone C.. 1990; The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. Yeast6:193–204 [CrossRef][PubMed]
    [Google Scholar]
  35. Saliola M., Gonnella R., Mazzoni C., Falcone C.. 1991; Two genes encoding putative mitochondrial alcohol dehydrogenases are present in the yeast Kluyveromyces lactis. Yeast7:391–401 [CrossRef][PubMed]
    [Google Scholar]
  36. Saliola M., Mazzoni C., Solimando N., Crisà A., Falcone C., Jung G., Fleer R.. 1999; Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis. Appl Environ Microbiol65:53–60[PubMed]
    [Google Scholar]
  37. Saliola M., De Maria I., Lodi T., Fiori A., Falcone C.. 2006; KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactis. FEMS Yeast Res6:1184–1192 [CrossRef][PubMed]
    [Google Scholar]
  38. Saliola M., Getuli C., Mazzoni C., Fantozzi I., Falcone C.. 2007; A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. FEMS Yeast Res7:693–701 [CrossRef][PubMed]
    [Google Scholar]
  39. Saliola M., Sponziello M., D'Amici S., Lodi T., Falcone C.. 2008; Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. FEMS Yeast Res8:697–705 [CrossRef][PubMed]
    [Google Scholar]
  40. Saliola M., D'Amici S., Sponziello M., Mancini P., Tassone P., Falcone C.. 2010; The transdehydrogenase genes KlNDE1 and KlNDI1 regulate the expression of KlGUT2 in the yeast Kluyveromyces lactis. FEMS Yeast Res10:518–526 [CrossRef][PubMed]
    [Google Scholar]
  41. Saliola M., Tramonti A., Lanini C., Cialfi S., De Biase D., Falcone C.. 2012; Intracellular NADPH levels affect the oligomeric state of the glucose 6-phosphate dehydrogenase, Eukaryot. Cell11:1503–1511
    [Google Scholar]
  42. Shain D., Salvadore C., Denis C.. 1992; Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. Mol Gen Genet232:478–488 [CrossRef]
    [Google Scholar]
  43. Shuster J., Yu J., Cox D., Chan R. V., Smith M., Young E.. 1986; ADR1-mediated regulation of ADH2 requires an inverted repeat sequence. Mol Cell Biol6:1894–1902 [CrossRef][PubMed]
    [Google Scholar]
  44. Simon M., Adam G., Rapatz W., Spevak W., Ruis H.. 1991; The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol11:699–704 [CrossRef][PubMed]
    [Google Scholar]
  45. Sloan J. S., Dombek K. M., Young E. T.. 1999; Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J Biol Chem274:37575–37582 [CrossRef][PubMed]
    [Google Scholar]
  46. Tachibana C., Yoo J. Y., Tagne J. B., Kacherovsky N., Lee T. I., Young E. T.. 2005; Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol25:2138–2146 [CrossRef][PubMed]
    [Google Scholar]
  47. Wésolowski-Louvel M., Prior C., Bornecque D., Fukuhara H.. 1992; Rag mutations involved in glucose metabolism in yeast: isolation and genetic characterization. Yeast8:711–719 [CrossRef]
    [Google Scholar]
  48. Yaffe M. P.. 1995; Isolation and analysis of mitochondrial inheritance mutants from Saccharomyces cerevisiae. Methods Enzymol260:447–453[PubMed][CrossRef]
    [Google Scholar]
  49. Young E. T., Paquin D.. 1985; Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol5:3024–3034 [CrossRef][PubMed]
    [Google Scholar]
  50. Young E. T., Saario J., Kacherovsky N., Chao A., Sloan J. S., Dombek K. M.. 1998; Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem273:32080–32087 [CrossRef][PubMed]
    [Google Scholar]
  51. Young E. T., Dombek K. M., Tachibana C., Ideker T.. 2003; Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem278:26146–26158 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000374
Loading
/content/journal/micro/10.1099/mic.0.000374
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error