1887

Abstract

is an important strain in the biodegradation of toxic alkylphenols and mass production of bioactive polymannuronate polymers. This strain forms a diverse, 3D biofilm architecture, including mushroom-like aerial structures, circular pellicles and surface spreading, depending on culture conditions. A mutagenesis and complementation study showed that a predicted transmembrane kinase, PSAKL28_21690 (1164 aa), harbouring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic GAF, histidine kinase and three CheY-like response regulator domains, plays a positive role in the formation of the special biofilm architecture and a negative role in swimming activity. In addition, the gene, named here as , is co-transcribed with three genes encoding proteins with CheR (PSAKL28_21700) and CheB (PSAKL28_21710) domains and response regulator and histidine kinase domains (PSAKL28_21720). This gene cluster is thus named and is found widely distributed in pseudomonads and other bacteria. Deletion of the genes in the cluster, except for, did not result in changes in biofilm-related phenotypes. The RNA-seq analysis showed that the expression of genes coding for flagellar synthesis was increased when was mutated. In addition, the expression of , which is one of final targets of the Gac regulon, was not significantly altered in the mutant, and overexpression of in the mutant did not produce the WT phenotype. These results indicate that the sensory Bms regulon does not affect the upper cascade of the Gac signal transduction pathway for the biofilm-related phenotypes in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000373
2016-11-23
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1945.html?itemId=/content/journal/micro/10.1099/mic.0.000373&mimeType=html&fmt=ahah

References

  1. Bertani L. E., Bertani G.. 1970; Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J Gen Virol6:201–212 [CrossRef][PubMed]
    [Google Scholar]
  2. Brencic A., McFarland K. A., McManus H. R., Castang S., Mogno I., Dove S. L., Lory S.. 2009; The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol73:434–445 [CrossRef][PubMed]
    [Google Scholar]
  3. Cho J. H., Jung D. K., Lee K., Rhee S.. 2009; Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J Biol Chem284:34321–34330 [CrossRef][PubMed]
    [Google Scholar]
  4. Choi K. S., Veeraragouda Y., Cho K. M., Lee S. O., Jo G. R., Cho K., Lee K.. 2007; Effect of gacS and gacA mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas sp. KL28. J Microbiol45:492–498[PubMed]
    [Google Scholar]
  5. Galperin M. Y., Nikolskaya A. N., Koonin E.. 2001; Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett203:11–21 [CrossRef][PubMed]
    [Google Scholar]
  6. García-Fontana C., Reyes-Darias J. A., Muñoz-Martínez F., Alfonso C., Morel B., Ramos J. L., Krell T.. 2013; High specificity in CheR methyltransferase function: CheR2 of Pseudomonas putida is essential for chemotaxis, whereas CheR1 is involved in biofilm formation. J Biol Chem288:18987–18999 [CrossRef][PubMed]
    [Google Scholar]
  7. González N., Heeb S., Valverde C., Kay E., Reimmann C., Junier T., Haas D.. 2008; Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics9: [CrossRef][PubMed]
    [Google Scholar]
  8. Goodman A. L., Merighi M., Hyodo M., Ventre I., Filloux A., Lory S.. 2009; Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev23:249–259 [CrossRef][PubMed]
    [Google Scholar]
  9. Hickman J. W., Harwood C. S.. 2008; Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol69:376–389 [CrossRef][PubMed]
    [Google Scholar]
  10. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  11. Jeong J. J., Kim J. H., Kim C. K., Hwang I., Lee K.. 2003; 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology149:3265–3277 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaczmarczyk A., Hochstrasser R., Vorholt J. A., Francez-Charlot A.. 2015; Two-tiered histidine kinase pathway involved in heat shock and salt sensing in the general stress response of Sphingomonas melonis Fr1. J Bacteriol197:1466–1477 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim S., Park J., Choi O., Kim J., Seo Y. S.. 2014; Investigation of quorum sensing-dependent gene expression in Burkholderia gladioli BSR3 through RNA-seq analyses. J Microbiol Biotechnol24:1609–1621 [CrossRef][PubMed]
    [Google Scholar]
  14. Kong W., Chen L., Zhao J., Shen T., Surette M. G., Shen L., Duan K.. 2013; Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol Microbiol88:784–797 [CrossRef][PubMed]
    [Google Scholar]
  15. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M., Peterson K. M.. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  16. Larsen R. A., Wilson M. M., Guss A. M., Metcalf W. W.. 2002; Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol178:193–201 [CrossRef][PubMed]
    [Google Scholar]
  17. Laub M. T., Goulian M.. 2007; Specificity in two-component signal transduction pathways. Annu Rev Genet41:121–145 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee K., Veeranagouda Y.. 2009; Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ Microbiol11:1117–1125 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee K., Lim E. J., Kim K. S., Huang S. L., Veeranagouda Y., Rehm B. H.. 2014; An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia. Appl Microbiol Biotechnol98:4137–4148 [CrossRef][PubMed]
    [Google Scholar]
  20. Lim J. Y., Lee K., Hwang I.. 2014; Complete genome sequence of the mushroom-like aerial structure-forming Pseudomonas alkylphenolia, a platform bacterium for mass production of poly-β-d-mannuronates. J Biotechnol192:20–21 [CrossRef][PubMed]
    [Google Scholar]
  21. Mascher T., Helmann J. D., Unden G.. 2006; Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev70:910–938 [CrossRef][PubMed]
    [Google Scholar]
  22. Miller V. L., Mekalanos J. J.. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol170:2575–2583[PubMed][CrossRef]
    [Google Scholar]
  23. Mulet M., Sánchez D., Lalucat J., Lee K., García-Valdés E.. 2015; Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. Int J Syst Evol Microbiol65:4013–4018 [CrossRef]
    [Google Scholar]
  24. Records A. R., Gross D. C.. 2010; Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol192:3584–3596 [CrossRef][PubMed]
    [Google Scholar]
  25. Sampedro I., Parales R. E., Krell T., Hill J. E.. 2015; Pseudomonas chemotaxis. FEMS Microbiol Rev39:17–46 [CrossRef][PubMed]
    [Google Scholar]
  26. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  27. Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P.. 1995; Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect103:1136–1143 [CrossRef][PubMed]
    [Google Scholar]
  28. Stanier R. Y., Palleroni N. J., Doudoroff M.. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol43:159–271 [CrossRef][PubMed]
    [Google Scholar]
  29. Veeranagouda Y., Basavaraja C., Bae H.-S., Liu K.-H., Lee K.. 2011a; Augmented production of poly-β-d-mannuronate and its acetylated forms by Pseudomonas. Process Biochemistry46:328–334 [CrossRef]
    [Google Scholar]
  30. Veeranagouda Y., Lee K., Cho A. R., Cho K., Anderson E. M., Lam J. S.. 2011b; Ssg, a putative glycosyltransferase, functions in lipo- and exopolysaccharide biosynthesis and cell surface-related properties in Pseudomonas alkylphenolia. FEMS Microbiol Lett315:38–45 [CrossRef][PubMed]
    [Google Scholar]
  31. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S. et al. 2006; Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A103:171–176 [CrossRef][PubMed]
    [Google Scholar]
  32. Wuichet K., Zhulin I. B.. 2010; Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal3:ra50 [CrossRef][PubMed]
    [Google Scholar]
  33. Yang X., Kuk J., Moffat K.. 2008; Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc Natl Acad Sci U S A105:14715–14720 [CrossRef][PubMed]
    [Google Scholar]
  34. Yun J., Cho K. M., Kim J. K., Lee S. O., Cho K., Lee K.. 2007; Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol Lett269:97–103 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhulin I. B., Nikolskaya A. N., Galperin M. Y.. 2003; Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol185:285–294 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000373
Loading
/content/journal/micro/10.1099/mic.0.000373
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error