1887

Abstract

Mycobacterium tuberculosis (Mtb) is one of the world’s most successful pathogens. Millions of new cases of tuberculosis occur each year, emphasizing the need for better methods of treatment. The design of novel therapeutics is dependent on our understanding of factors that are essential for pathogenesis. Many bacterial pathogens use pili and other adhesins to mediate pathogenesis. The recently identified Mycobacterium tuberculosis pilus (MTP) and the hypothetical, widely conserved Flp pilus have been speculated to be important for Mtb virulence based on in vitro studies and homology to other pili, respectively. However, the roles for these pili during infection have yet to be tested. We addressed this gap in knowledge and found that neither MTP nor the hypothetical Flp pilus is required for Mtb survival in mouse models of infection, although MTP can contribute to biofilm formation and subsequent isoniazid tolerance. However, differences in mtp expression did affect lesion architecture in infected lungs. Deletion of mtp did not correlate with loss of cell-associated extracellular structures as visualized by transmission electron microscopy in Mtb Erdman and HN878 strains, suggesting that the phenotypes of the mtp mutants were not due to defects in production of extracellular structures. These findings highlight the importance of testing the virulence of adhesion mutants in animal models to assess the contribution of the adhesin to infection. This study also underscores the need for further investigation into additional strategies that Mtb may use to adhere to its host so that we may understand how this pathogen invades, colonizes and disseminates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000368
2016-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1784.html?itemId=/content/journal/micro/10.1099/mic.0.000368&mimeType=html&fmt=ahah

References

  1. Alteri C. J..( 2005;). Novel pili of Mycobacterium tuberculosis. . PhD thesis. Tucson, AZ:: University of Arizona;.
    [Google Scholar]
  2. Alteri C. J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J. A., Friedman R. L..( 2007;). Mycobacterium tuberculosis produces pili during human infection. . Proc Natl Acad Sci U S A 104: 5145–5150. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barnhart M. M., Chapman M. R..( 2006;). Curli biogenesis and function. . Annu Rev Microbiol 60: 131–147. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barocchi M. A., Ries J., Zogaj X., Hemsley C., Albiger B., Kanth A., Dahlberg S., Fernebro J., Moschioni M. et al.( 2006;). A pneumococcal pilus influences virulence and host inflammatory responses. . Proc Natl Acad Sci U S A 103: 2857–2862. [CrossRef] [PubMed]
    [Google Scholar]
  5. Blanco L. P., Evans M. L., Smith D. R., Badtke M. P., Chapman M. R..( 2012;). Diversity, biogenesis and function of microbial amyloids. . Trends Microbiol 20: 66–73. [CrossRef] [PubMed]
    [Google Scholar]
  6. Connell I., Agace W., Klemm P., Schembri M., Mărild S., Svanborg C..( 1996;). Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. . Proc Natl Acad Sci U S A 93: 9827–9832. [CrossRef] [PubMed]
    [Google Scholar]
  7. Craig L., Pique M. E., Tainer J. A..( 2004;). Type IV pilus structure and bacterial pathogenicity. . Nat Rev Microbiol 2: 363–378. [CrossRef] [PubMed]
    [Google Scholar]
  8. DePas W. H., Hufnagel D. A., Lee J. S., Blanco L. P., Bernstein H. C., Fisher S. T., James G. A., Stewart P. S., Chapman M. R..( 2013;). Iron induces bimodal population development by Escherichia coli. . Proc Natl Acad Sci U S A 110: 2629–2634. [CrossRef] [PubMed]
    [Google Scholar]
  9. Driver E. R., Ryan G. J., Hoff D. R., Irwin S. M., Basaraba R. J., Kramnik I., Lenaerts A. J..( 2012;). Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. . Antimicrob Agents Chemother 56: 3181–3195. [CrossRef] [PubMed]
    [Google Scholar]
  10. Flores-Mireles A. L., Walker J. N., Caparon M., Hultgren S. J..( 2015;). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. . Nat Rev Microbiol 13: 269–284. [CrossRef] [PubMed]
    [Google Scholar]
  11. Foster T. J., Geoghegan J. A., Ganesh V. K., Höök M..( 2014;). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. . Nat Rev Microbiol 12: 49–62. [CrossRef] [PubMed]
    [Google Scholar]
  12. Giovannini D., Cappelli G., Jiang L., Castilletti C., Colone A., Serafino A., Wannenes F., Giacò L., Quintiliani G. et al.( 2012;). A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria?. Microb Pathog 53: 135–146. [CrossRef] [PubMed]
    [Google Scholar]
  13. Govender V. S., Ramsugit S., Pillay M..( 2014;). Mycobacterium tuberculosis adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. . Microbiology 160: 1821–1831. [CrossRef] [PubMed]
    [Google Scholar]
  14. Harper J., Skerry C., Davis S. L., Tasneen R., Weird M., Kramnik I., Bishai W. R., Pomper M. G., Nuermberger E. L., Jain S. K..( 2012;). Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. . J Infect Dis 205: 595–602. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hosseini H., Fooladi A. A. I., Arjomandzadegan M., Emami N., Bornasi H..( 2014;). Genetics study and transmission electron microscopy of pili in susceptible and resistant clinical isolates of Mycobacterium tuberculosis. . Asian Pac J Trop Med 7: S199–S203. [CrossRef]
    [Google Scholar]
  16. Kachlany S. C., Planet P. J., Bhattacharjee M. K., Kollia E., DeSalle R., Fine D. H., Figurski D. H..( 2000;). Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. . J Bacteriol 182: 6169–6176. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kachlany S. C., Planet P. J., Desalle R., Fine D. H., Figurski D. H., Kaplan J. B..( 2001;). flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. . Mol Microbiol 40: 542–545. [CrossRef] [PubMed]
    [Google Scholar]
  18. Khelef N., Bachelet C. M., Vargaftig B. B., Guiso N..( 1994;). Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins or toxins. . Infect Immun 62: 2893–2900.[PubMed]
    [Google Scholar]
  19. Lee J., Shin S., Teng C. H., Hong S. J., Kim K. S..( 2005;). FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia. . Biochem Biophys Res Commun 334: 917–923. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lenaerts A. J., Hoff D., Aly S., Ehlers S., Andries K., Cantarero L., Orme I. M., Basaraba R. J..( 2007;). Location of persisting mycobacteria in a guinea pig model of tuberculosis revealed by r207910. . Antimicrob Agents Chemother 51: 3338–3345. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mandlik A., Swierczynski A., Das A., Ton-That H., Livny J., Robins W. P., Ritchie J. M., Mekalanos J. J., Waldor M. K..( 2008;). Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. . Trends Microbiol 16: 33–40. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mazandu G. K., Mulder N. J..( 2012;). Function prediction and analysis of mycobacterium tuberculosis hypothetical proteins. . Int J Mol Sci 13: 7283–7302. [CrossRef] [PubMed]
    [Google Scholar]
  23. Middlebrook G., Dubos R. J., Pierce C..( 1947;). Virulence and morphological characteristics of mammalian tubercle bacilli. . J Exp Med 86: 175–184.[CrossRef]
    [Google Scholar]
  24. Moorthy S., Keklak J., Klein E. A..( 2016;). Perspective: adhesion mediated signal transduction in bacterial pathogens. . Pathogens 5:,E23. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mulvey M. A., Schilling J. D., Hultgren S. J..( 2001;). Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. . Infect Immun 69: 4572–4579. [CrossRef] [PubMed]
    [Google Scholar]
  26. Naidoo N., Ramsugit S., Pillay M..( 2014;). Mycobacterium tuberculosis pili (MTP), a putative biomarker for a tuberculosis diagnostic test. . Tuberculosis 94: 338–345. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nallapareddy S. R., Singh K. V., Sillanpää J., Garsin D. A., Höök M., Erlandsen S. L., Murray B. E..( 2006;). Endocarditis and biofilm-associated pili of Enterococcus faecalis. . J Clin Invest 116: 2799–2807. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nielsen H. V., Guiton P. S., Kline K. A., Port G. C., Pinkner J. S., Neiers F., Normark S., Henriques-Normark B., Caparon M. G., Hultgren S. J..( 2012;). The Metal Ion-Dependent Adhesion Site Motif of the Enterococcus faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract Infection. . mBio 3:,e00177-12. [CrossRef]
    [Google Scholar]
  29. Nobbs A. H., Lamont R. J., Jenkinson H. F..( 2009;). Streptococcus adherence and colonization. . Microbiol Mol Biol Rev 73: 407–450. [CrossRef] [PubMed]
    [Google Scholar]
  30. O'Toole G. A., Kolter R..( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. . Mol Microbiol 30: 295–304. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ojha A. K., Baughn A. D., Sambandan D., Hsu T., Trivelli X., Guerardel Y., Alahari A., Kremer L., Jacobs W. R., Hatfull G. F..( 2008;). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant mycobacteria. . Mol Microbiol 69: 164–174. [CrossRef] [PubMed]
    [Google Scholar]
  32. Orme I. M..( 2014;). A new unifying theory of the pathogenesis of tuberculosis. . Tuberculosis 94: 8–14. [CrossRef] [PubMed]
    [Google Scholar]
  33. Parrish N. M., Ko C. G., Dick J. D., Jones P. B., Ellingson J. L..( 2004;). Growth, Congo Red agar colony morphotypes and antibiotic susceptibility testing of Mycobacterium avium subspecies paratuberculosis. . Clin Med Res 2: 107–114. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pethe K., Aumercier M., Fort E., Gatot C., Locht C., Menozzi F. D..( 2000;). Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin. . J Biol Chem 275: 14273–14280. [CrossRef] [PubMed]
    [Google Scholar]
  35. Pethe K., Alonso S., Biet F., Delogu G., Brennan M. J., Locht C., Menozzi F. D..( 2001;). The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. . Nature 412: 190–194. [CrossRef] [PubMed]
    [Google Scholar]
  36. Pizarro-Cerdá J., Cossart P..( 2006;). Bacterial adhesion and entry into host cells. . Cell 124: 715–727. [CrossRef] [PubMed]
    [Google Scholar]
  37. Planet P. J., Kachlany S. C., Fine D. H., DeSalle R., Figurski D. H..( 2003;). The Widespread Colonization Island of Actinobacillus actinomycetemcomitans. . Nat Genet 34: 193–198. [CrossRef] [PubMed]
    [Google Scholar]
  38. Ramsugit S., Guma S., Pillay B., Jain P., Larsen M. H., Danaviah S., Pillay M..( 2013;). Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. . Antonie Van Leeuwenhoek 104: 725–735. [CrossRef] [PubMed]
    [Google Scholar]
  39. Ramsugit S., Pillay M..( 2014;). Mycobacterium tuberculosis Pili promote adhesion to and invasion of THP-1 macrophages. . Jpn J Infect Dis 67: 476–478. [CrossRef] [PubMed]
    [Google Scholar]
  40. Ramsugit S., Pillay M..( 2015;). Pili of Mycobacterium tuberculosis: current knowledge and future prospects. . Arch Microbiol 197: 737–744. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ramsugit S., Pillay B., Pillay M..( 2016;). Evaluation of the role of Mycobacterium tuberculosis pili (MTP) as an adhesin, invasin, and cytokine inducer of epithelial cells. . Braz J Infect Dis 20: 160–165. [CrossRef] [PubMed]
    [Google Scholar]
  42. Richards J., Ojha A..( 2014;). Mycobacterial biofilms. . In Molecular Genetics of Mycobacteria, Second Edition, Chapter 37 , pp. 773–784. Edited by Hatfull G., Jacobs W.. Washington, DC:: ASM Press;.
    [Google Scholar]
  43. Schreiner H. C., Sinatra K., Kaplan J. B., Furgang D., Kachlany S. C., Planet P. J., Perez B. A., Figurski D. H., Fine D. H..( 2003;). Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. . Proc Natl Acad Sci U S A 100: 7295–7300. [CrossRef] [PubMed]
    [Google Scholar]
  44. Smeulders M. J., Keer J., Speight R. A., Williams H. D..( 1999;). Adaptation of Mycobacterium smegmatis to stationary phase. . J Bacteriol 181: 270–283.[PubMed]
    [Google Scholar]
  45. Stallings C. L., Stephanou N. C., Chu L., Hochschild A., Nickels B. E., Glickman M. S..( 2009;). CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. . Cell 138: 146–159. [CrossRef] [PubMed]
    [Google Scholar]
  46. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J..( 1987;). Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. . Proc Natl Acad Sci U S A 84: 2833–2837. [CrossRef] [PubMed]
    [Google Scholar]
  47. Telford J. L., Barocchi M. A., Margarit I., Rappuoli R., Grandi G..( 2006;). Pili in gram-positive pathogens. . Nat Rev Microbiol 4: 509–519. [CrossRef] [PubMed]
    [Google Scholar]
  48. Terao Y..( 2012;). The virulence factors and pathogenic mechanisms of Streptococcus pyogenes. . J Oral Biosci 54: 96–100. [CrossRef]
    [Google Scholar]
  49. Tomich M., Planet P. J., Figurski D. H..( 2007;). The tad locus: postcards from the widespread colonization island. . Nat Rev Microbiol 5: 363–375. [CrossRef] [PubMed]
    [Google Scholar]
  50. Weiss L. A., Stallings C. L..( 2013;). Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp. . J Bacteriol 195: 5629–5638. [CrossRef] [PubMed]
    [Google Scholar]
  51. Wong K.-W., Jacobs W. R..( 2016;). Postprimary Tuberculosis and Macrophage Necrosis: Is There a Big ConNECtion?. mBio 7:,e01589-15. [CrossRef]
    [Google Scholar]
  52. Wright K. J., Hultgren S. J..( 2006;). Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. . Future Microbiol 1: 75–87. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000368
Loading
/content/journal/micro/10.1099/mic.0.000368
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error