1887

Abstract

Unlike Escherichia coli strains belonging to phylogroup B2, the clinical significance of strains belonging to phylogroup F is not well understood. Here we report on a collection of phylogroup F strains recovered in Australia from faeces and extra-intestinal sites from humans, companion animals and native animals, as well as from poultry meat and water samples. The distribution of sequence types was clearly non-random with respect to isolate source. The antimicrobial resistance and virulence trait profiles also varied with the sequence type of the isolate. Phylogroup F strains tended to lack the virulence traits typically associated with phylogroup B2 strains responsible for extra-intestinal infection in humans. Resistance to fluoroquinolones and/or expanded-spectrum cephalosporins was common within ST648, ST354 and ST3711. Although ST354 and ST3711 are part of the same clonal complex, the ST3711 isolates were only recovered from native birds being cared for in a single wildlife rehabilitation centre, whereas the ST354 isolates were from faeces and extra-intestinal sites of dogs and humans, as well as from poultry meat. Although ST354 isolates from chicken meat in Western Australia were distinct from all other ST354 isolates, those from poultry meat samples collected in eastern Australia shared many similarities with other ST354 isolates from humans and companion animals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000367
2016-11-23
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1904.html?itemId=/content/journal/micro/10.1099/mic.0.000367&mimeType=html&fmt=ahah

References

  1. Abraham S., Trott D. J., Jordan D., Gordon D. M., Groves M. D., Fairbrother J. M., Smith M. G., Zhang R., Chapman T. A..( 2014a;). Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic E. coli in Australia. . Int J Antimicrob Agent44:105–111. [CrossRef]
    [Google Scholar]
  2. Abraham S., Groves M. D., Trott D. J., Chapman T. A., Turner B., Hornitzky M., Jordan D..( 2014b;). Salmonella enterica isolated from infections in Australian livestock remain susceptible to critical antimicrobials. . Int J Antimicrob Agent43:126–130. [CrossRef]
    [Google Scholar]
  3. Abraham S., Jordan D., Wong H. S., Johnson J. R., Toleman M. A., Wakeham D. L., Gordon D. M., Turnidge J. D., Mollinger J. L. et al.( 2015;). First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals. . J Glob Antimicrob Resist3:273–277. [CrossRef]
    [Google Scholar]
  4. Banerjee R., Johnston B., Lohse C., Porter S. B., Clabots C., Johnson J. R..( 2013a;). Escherichia coli sequence type 131 is a dominant, antimicrobial-resistant clonal group associated with healthcare and elderly hosts. . Infect Cont Hosp Epidemiol34:361–369. [CrossRef]
    [Google Scholar]
  5. Banerjee R., Johnston B., Lohse C., Chattopadhyay S., Tchesnokova V., Sokurenko E., Johnson J. R..( 2013b;). The clonal distribution and diversity of extraintestinal Escherichia coli isolates vary according to patient characteristics. . Antimicrob Chemother57:5912–5917. [CrossRef]
    [Google Scholar]
  6. Ben Sallem R., Ben Slama K., Estepa V., Cheikhna E. O., Mohamed A. M., Chairat S., Ruiz-Larrea F., Boudabous A., Torres C..( 2015;). Detection of CTX-M-15-producing Escherichia coli isolates of lineages ST410-A, ST617-A and ST354-D in faecal samples of hospitalized patients in a Mauritanian hospital. . J Chemother27:114–116. [CrossRef][PubMed]
    [Google Scholar]
  7. Bergeron C. R., Prussing C., Boerlin P., Daignault D., Dutil L., Reid-Smith R. J., Zhanel G. G., Manges A. R..( 2012;). Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. . Emerg Infect Dis18:415–421. [CrossRef]
    [Google Scholar]
  8. Blyton M. D., Cornall S. J., Kennedy K., Colligon P., Gordon D. M..( 2014;). Sex-dependent competitive dominance of phylogenetic group B2 Escherichia coli strains within human hosts. . Environ Microbiol Rep6: 605–610. [CrossRef][PubMed]
    [Google Scholar]
  9. Blyton M. D., Pi H., Vangchhia B., Abraham S., Trott D. J., Johnson J. R., Gordon D. M..( 2015;). Genetic structure and antimicrobial resistance of Escherichia coli and cryptic clades in birds with diverse human associations. . Appl Environ Microbiol81:5123–5133. [CrossRef][PubMed]
    [Google Scholar]
  10. Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., Møller Aarestrup F., Hasman H..( 2014;). In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. . Antimicrob Agents Chemother58:3895–3903. [CrossRef][PubMed]
    [Google Scholar]
  11. Cheng A. C., Turnidge J., Collignon P., Looke D., Barton M., Gottlieb T..( 2012;). Control of fluoroquinolone resistance through successful regulation, Australia. . Emerg Infect Dis18:1453–1460. [CrossRef]
    [Google Scholar]
  12. Clermont O., Bonacorsi S., Bingen E..( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. . Appl Environ Microbiol66:4555–4558. [CrossRef][PubMed]
    [Google Scholar]
  13. Clermont O., Christenson J. K., Denamur E., Gordon D. M..( 2013;). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. . Environ Microbiol Rep5:58–65. [CrossRef][PubMed]
    [Google Scholar]
  14. Collignon P..( 2015;). Antibiotic resistance: are we all doomed?. Intern Med J45:1109–1115. [CrossRef][PubMed]
    [Google Scholar]
  15. Coque T. M., Novais A., Carattoli A., Poirel L., Pitout J., Peixe L., Baquero F., Cantón R., Nordmann P..( 2008;). Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. . Emerg Infect Dis14:195–200. [CrossRef][PubMed]
    [Google Scholar]
  16. Darling A. E., Mau B., Perna N. T..( 2010;). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. . PLoS One5:e11147. [CrossRef][PubMed]
    [Google Scholar]
  17. EUCAST( 2013;). Antimicrobial susceptibility testing EUCAST disk diffusion method. . http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Manual_v_3.0_EUCAST_Disk_Test.pdf
  18. Ewers C., Bethe A., Stamm I., Grobbel M., Kopp P. A., Guerra B., Stubbe M., Doi Y., Zong Z. et al.( 2014;). CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence?. J Antimicrob Chemother69:1224–1230. [CrossRef][PubMed]
    [Google Scholar]
  19. Gillett A..( 2010;). VetCheck: medicating wildlife. . WildNews2010:8–9.
    [Google Scholar]
  20. Gordon D. M., Cowling A..( 2003;). The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. . Microbiology149:3575–3586. [CrossRef][PubMed]
    [Google Scholar]
  21. Gordon D. M., Stern S. E., Collignon P. J..( 2005;). Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. . Microbiology151:15–23. [CrossRef][PubMed]
    [Google Scholar]
  22. Gordon D. M., O'Brien C. L., Pavli P..( 2015;). Escherichia coli diversity in the lower intestinal tract of humans. . Environ Microbiol Rep7:642–648. [CrossRef][PubMed]
    [Google Scholar]
  23. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O..( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol59:307–321. [CrossRef][PubMed]
    [Google Scholar]
  24. Guo S., Wakeham D., Brouwers H. J., Cobbold R. N., Abraham S., Mollinger J. L., Johnson J. R., Chapman T. A., Gordon D. M. et al.( 2015;). Human-associated fluoroquinolone-resistant Escherichia coli clonal lineages, including ST354, isolated from canine feces and extraintestinal infections in Australia. . Microbes Infect17:266–274. [CrossRef][PubMed]
    [Google Scholar]
  25. Ingram P. R., Rogers B. A., Sidjabat H. E., Gibson J. S., Inglis T. J..( 2013;). Co-selection may explain high rates of ciprofloxacin non-susceptible Escherichia coli from retail poultry reared without prior fluoroquinolone exposure. . J Med Microbiol62:1743–1746. [CrossRef][PubMed]
    [Google Scholar]
  26. Joensen K. G., Scheutz F., Lund O., Hasman H., Kaas R. S., Nielsen E. M., Aarestrup F. M..( 2014;). Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. . J Clin Microbiol52:1501–1510. [CrossRef][PubMed]
    [Google Scholar]
  27. Joensen K. G., Tetzschner A. M., Iguchi A., Aarestrup F. M., Scheutz F..( 2015;). Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. . J Clin Microbiol53: 2410–2426. [CrossRef][PubMed]
    [Google Scholar]
  28. Johnson J. R., Murray A. C., Gajewski A., Sullivan M., Snippes P., Kuskowski M. A., Smith K. E..( 2003;). Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. . Antimicrob Agents Chemother47:2161–2168. [CrossRef][PubMed]
    [Google Scholar]
  29. Lau S. H., Reddy S., Cheesbrough J., Bolton F. J., Willshaw G., Cheasty T., Fox A. J., Upton M..( 2008;). Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. . J Clin Microbiol46:1076–1080. [CrossRef][PubMed]
    [Google Scholar]
  30. Power M. L., Littlefield-Wyer J., Gordon D. M., Veal D. A., Slade M. B..( 2005;). Phenotypic and genotypic characterization of encapsulated Escherichia coli isolated from blooms in two Australian lakes. . Environ Microbiol7:631–640. [CrossRef][PubMed]
    [Google Scholar]
  31. Riley L. W..( 2014;). Pandemic lineages of extraintestinal pathogenic Escherichia coli. . Clin Microbiol Infect20:380–390. [CrossRef][PubMed]
    [Google Scholar]
  32. Tchesnokova V., Billig M., Chattopadhyay S., Linardopoulou E., Aprikian P., Roberts P. L., Skrivankova V., Johnston B., Gileva A. et al.( 2013;). Predictive diagnostics for Escherichia coli infections based on the clonal association of antimicrobial resistance and clinical outcome. . J Clin Microbiol51:2991–2999. [CrossRef][PubMed]
    [Google Scholar]
  33. Tenaillon O., Skurnik D., Picard B., Denamur E..( 2010;). The population genetics of commensal Escherichia coli. . Nat Rev Microbiol8:207–217. [CrossRef][PubMed]
    [Google Scholar]
  34. Treangen T. J., Ondov B. D., Koren S., Phillippy A. M..( 2014;). The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. . Genome Biol15:524. [CrossRef][PubMed]
    [Google Scholar]
  35. Turnidge J. D., Gottlieb T., Mitchell D. H., Coomb G. W., Daley D. A., Bell J. M..( 2014;). Community-onset Gram-negative surveillance program annual report, 2012. . Commun Dis Intell38:E54E58.
    [Google Scholar]
  36. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F. M., Larsen M..( 2012;). Identification of acquired antimicrobial resistance genes. . J Antimicrob Chemother67:2640–2644. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000367
Loading
/content/journal/micro/10.1099/mic.0.000367
Loading

Data & Media loading...

Supplementary File 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error