1887

Abstract

All cells are subjected to oxidative stress, a condition under which reactive oxygen species (ROS) production exceeds elimination. Bacterial defences against ROS include synthesis of antioxidant enzymes like peroxidases and catalases. can produce two distinct catalases, KatB and KatG, which contribute to ROS homeostasis. In this study, we analysed the mechanism behind and expression in two O1 pandemic strains, O395 and N16961, of classical and El Tor biotypes, respectively. Both strains express these genes, especially at stationary phase. However, El Tor N16961 produces higher KatB and KatG levels and is much more resistant to peroxide challenge than the classical strain, confirming a direct relationship between catalase activity and oxidative stress resistance. Moreover, we showed that and expression levels depend on inorganic phosphate (Pi) availability, in contrast to other bacterial species. In N16961, and expression is reduced under Pi limitation relative to Pi abundance. Total catalase activity in N16961 and its mutant cells was similar, independently of growth conditions, indicating that the PhoB/PhoR system is not required for and expression. However, N16961 cells from Pi-limited cultures were 50–100-fold more resistant to HO challenge and accumulated less ROS than mutant cells. Together, these findings suggest that, besides KatB and KatG, the PhoB/PhoR system is an important protective factor against ROS in N16961. They also corroborate previous results from our and other groups, suggesting that the PhoB/PhoR system is fundamental for . biology.

Keyword(s): KatB , KatG and phosphate
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000364
2016-11-23
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1955.html?itemId=/content/journal/micro/10.1099/mic.0.000364&mimeType=html&fmt=ahah

References

  1. Arana I., Muela A., Iriberri J., Egea L., Barcina I. 1992; Role of hydrogen peroxide in loss of culturability mediated by visible light in Escherichia coli in a freshwater ecosystem. Appl Environ Microbiol 58:3903–3907[PubMed]
    [Google Scholar]
  2. Colwell R. R. 1996; Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031 [View Article][PubMed]
    [Google Scholar]
  3. Cooper W. J., Zika R. G. 1983; Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220:711–712 [View Article][PubMed]
    [Google Scholar]
  4. Dubbs J. M., Mongkolsuk S. 2012; Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol 194:5495–5503 [View Article][PubMed]
    [Google Scholar]
  5. Finkelstein R. A. 1996; Cholera, Vibrio cholerae O1 and O139, and other pathogenic vibrios. In Medical Microbiology Edited by Byron S. Galveston, Tx: University of Texas Medical Branch;
    [Google Scholar]
  6. Goulart C. L., dos Santos G. G., Barbosa L. C., Lery L. M., Bisch P. M., von Krüger W. M. 2010; A ToxR-dependent role for the putative phosphoporin VCA1008 in bile salt resistance in Vibrio cholerae El Tor N16961. Microbiology 156:3011–3020 [View Article][PubMed]
    [Google Scholar]
  7. Jung I. L., Kim I. G. 2003; Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem Biophys Res Commun 301:915–922 [View Article][PubMed]
    [Google Scholar]
  8. Lery L. M., Goulart C. L., Figueiredo F. R., Verdoorn K. S., Einicker-Lamas M., Gomes F. M., Machado E. A., Bisch P. M., von Kruger W. M. 2013; A comparative proteomic analysis of Vibrio cholerae O1 wild-type cells versus a phoB mutant showed that the PhoB/PhoR system is required for full growth and rpoS expression under inorganic phosphate abundance. J Proteomics 86:1–15 [View Article][PubMed]
    [Google Scholar]
  9. Lushchak V. I. 2011a; Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153:175–190 [View Article]
    [Google Scholar]
  10. Lushchak V. I. 2011b; Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30 [View Article][PubMed]
    [Google Scholar]
  11. Macián F., Pérez-Roger I., Armengod M. E. 1994; An improved vector system for constructing transcriptional lacZ fusions: analysis of regulation of the dnaA, dnaN, recF and gyrB genes of Escherichia coli. Gene 145:17–24 [View Article][PubMed]
    [Google Scholar]
  12. Miller J. H. 1972 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Osorio C. G., Martinez-Wilson H., Camilli A. 2004; The ompU paralogue vca1008 is required for virulence of Vibrio cholerae. J Bacteriol 186:5167–5171 [View Article][PubMed]
    [Google Scholar]
  14. Pratt J. T., McDonough E., Camilli A. 2009; PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J Bacteriol 191:6632–6642 [View Article][PubMed]
    [Google Scholar]
  15. Pratt J. T., Ismail A. M., Camilli A. 2010; PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol Microbiol 77:1595–1605 [View Article][PubMed]
    [Google Scholar]
  16. Salim A., Lan R., Reeves P. R. 2005; Vibrio cholerae pathogenic clones. Emerg Infect Dis 11:1758–1760 [View Article][PubMed]
    [Google Scholar]
  17. Schellhorn H. E. 1995; Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol Lett 131:113–119 [View Article][PubMed]
    [Google Scholar]
  18. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858 [View Article][PubMed]
    [Google Scholar]
  19. Shimizu K. 2013; Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4:1–35 [View Article][PubMed]
    [Google Scholar]
  20. Silva A. J., Sultan S. Z., Liang W., Benitez J. A. 2008; Role of the histone-like nucleoid structuring protein in the regulation of rpoS and RpoS-dependent genes in Vibrio cholerae. J Bacteriol 190:7335–7345 [View Article][PubMed]
    [Google Scholar]
  21. Storz G., Tartaglia L. A., Ames B. N. 1990; Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194 [View Article][PubMed]
    [Google Scholar]
  22. Sultan S. Z., Silva A. J., Benitez J. A. 2010; The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol Lett 302:22–31 [View Article][PubMed]
    [Google Scholar]
  23. Taylor C. F., Paton N. W., Lilley K. S., Binz P. A., Julian R. K., Jones A. R., Zhu W., Apweiler R., Aebersold R. et al. 2007; The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893 [View Article][PubMed]
    [Google Scholar]
  24. Vallet-Gely I., Lemaitre B., Boccard F. 2008; Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313 [View Article][PubMed]
    [Google Scholar]
  25. von Krüger W. M., Humphreys S., Ketley J. M. 1999; A role for the PhoBR regulatory system homologue in the Vibrio cholerae phosphate-limitation response and intestinal colonization. Microbiology 145:2463–2475 [View Article][PubMed]
    [Google Scholar]
  26. von Krüger W. M., Lery L. M., Soares M. R., de Neves-Manta F. S., Batista e Silva C. M., Neves-Ferreira A. G., Perales J., Bisch P. M. 2006; The phosphate-starvation response in Vibrio cholerae O1 and phoB mutant under proteomic analysis: disclosing functions involved in adaptation, survival and virulence. Proteomics 6:1495–1511 [View Article][PubMed]
    [Google Scholar]
  27. Wang H., Chen S., Zhang J., Rothenbacher F. P., Jiang T., Kan B., Zhong Z., Zhu J. 2012; Catalases promote resistance of oxidative stress in Vibrio cholerae. PLoS One 7:e53383 [View Article][PubMed]
    [Google Scholar]
  28. Wanner B. L. 1993; Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51:47–54 [View Article][PubMed]
    [Google Scholar]
  29. Woodbury W., Spencer A. K., Stahman M. A. 1971; An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305 [View Article][PubMed]
    [Google Scholar]
  30. Yildiz F. H., Liu X. S., Heydorn A., Schoolnik G. K. 2004; Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515 [View Article][PubMed]
    [Google Scholar]
  31. Yuan Z. C., Zaheer R., Finan T. M. 2005; Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol Microbiol 58:877–894 [View Article][PubMed]
    [Google Scholar]
  32. Yuan Z. C., Zaheer R., Morton R., Finan T. M. 2006; Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 34:2686–2697 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000364
Loading
/content/journal/micro/10.1099/mic.0.000364
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error