1887

Abstract

We analysed the response of the model bacterium to abrupt depletion of glucose after several generations of exponential growth. Glucose depletion resulted in a drastic drop in the energy charge accompanied by an extremely low GTP level and an almost total arrest of protein synthesis. Strikingly, the cell prioritized the continued synthesis of a few proteins, of which the ribosomal dimerization factor YfiA was the most highly expressed. Transcriptome analysis showed no immediate decrease in total mRNA levels despite the lowered nucleotide pools and only marginally increased levels of the transcript. Severe up-regulation of genes in the FruR, CcpA, ArgR and AhrC regulons were consistent with a downshift in carbon and energy source. Based upon the results, we suggest that transcription proceeded long enough to record the transcriptome changes from activation of the FruR, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting that YfiA-mediated ribosomal dimerization is important for keeping long-term starved cells viable and competent for growth initiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000362
2016-10-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1829.html?itemId=/content/journal/micro/10.1099/mic.0.000362&mimeType=html&fmt=ahah

References

  1. Anderson K. L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P. D., Projan S. J., Dunman P. M.. 2006; Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol188:6739–6756 [CrossRef][PubMed]
    [Google Scholar]
  2. Atkinson D. E.. 1968; The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry7:4030–4034 [CrossRef][PubMed]
    [Google Scholar]
  3. Barrière C., Veiga-da-Cunha M., Pons N., Guédon E., van Hijum S. A., Kok J., Kuipers O. P., Ehrlich D. S., Renault P.. 2005; Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. J Bacteriol187:3752–3761 [CrossRef][PubMed]
    [Google Scholar]
  4. Brøndsted L., Hammer K.. 1999; Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl Environ Microbiol65:752–758[PubMed]
    [Google Scholar]
  5. Carvalho B. S., Irizarry R. A.. 2010; A framework for oligonucleotide microarray preprocessing. Bioinformatics26:2363–2367 [CrossRef][PubMed]
    [Google Scholar]
  6. Dressaire C., Redon E., Gitton C., Loubière P., Monnet V., Cocaign-Bousquet M.. 2011; Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact10:S18 [CrossRef][PubMed]
    [Google Scholar]
  7. Gasson M. J.. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol154:1–9[PubMed]
    [Google Scholar]
  8. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y. et al. 2004; Bioconductor: open software development for computational biology and bioinformatics. Genome Biol5:R80 [CrossRef][PubMed]
    [Google Scholar]
  9. Gualerzi C. O., Giuliodori A. M., Pon C. L.. 2003; Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol331:527–539 [CrossRef][PubMed]
    [Google Scholar]
  10. Holo H., Nes I. F.. 1989; High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol55:3119–3123[PubMed]
    [Google Scholar]
  11. Jendresen C. B., Martinussen J., Kilstrup M.. 2012; The PurR regulon in Lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery. Microbiology158:2026–2038 [CrossRef][PubMed]
    [Google Scholar]
  12. Jendresen C. B., Dimitrov P., Gautier L., Liu M., Martinussen J., Kilstrup M.. 2014; Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis. Microbiology160:1321–1331 [CrossRef][PubMed]
    [Google Scholar]
  13. Jensen P. R., Hammer K.. 1993; Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol59:4363–4366[PubMed]
    [Google Scholar]
  14. Jensen K. F., Fast R., Karlström O., Larsen J. N.. 1986; Association of RNA polymerase having increased Km for ATP and UTP with hyperexpression of the pyrB and pyrE genes of Salmonella typhimurium. J Bacteriol166:857–865[PubMed]
    [Google Scholar]
  15. Kilstrup M., Jacobsen S., Hammer K., Vogensen F. K.. 1997; Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol63:1826–1837[PubMed]
    [Google Scholar]
  16. Kline B. C., McKay S. L., Tang W. W., Portnoy D. A.. 2015; The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis. J Bacteriol197:581–591 [CrossRef][PubMed]
    [Google Scholar]
  17. Kornberg H., Lambourne L. T.. 1994; The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli. Proc Natl Acad Sci U S A91:11080–11083 [CrossRef][PubMed]
    [Google Scholar]
  18. Larsen R., van Hijum S. A., Martinussen J., Kuipers O. P., Kok J.. 2008; Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol74:4768–4771 [CrossRef][PubMed]
    [Google Scholar]
  19. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K.. 1995; A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol177:7011–7018[PubMed]
    [Google Scholar]
  20. Leenhouts K., Buist G., Bolhuis A., ten Berge A., Kiel J., Mierau I., Dabrowska M., Venema G., Kok J.. 1996; A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet253:217–224 [CrossRef][PubMed]
    [Google Scholar]
  21. Magdenoska O., Martinussen J., Thykaer J., Nielsen K. F.. 2013; Dispersive solid phase extraction combined with ion-pair ultra high-performance liquid chromatography tandem mass spectrometry for quantification of nucleotides in Lactococcus lactis. Anal Biochem440:166–177 [CrossRef][PubMed]
    [Google Scholar]
  22. Maguin E., Prévost H., Ehrlich S. D., Gruss A.. 1996; Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol178:931–935[PubMed]
    [Google Scholar]
  23. Martinussen J., Wadskov-Hansen S., Hammer K.. 2003; Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol185:1503–1508 [CrossRef][PubMed]
    [Google Scholar]
  24. Mesters J. R., Potapov A. P., de Graaf J. M., Kraal B.. 1994; Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. J Mol Biol242:644–654 [CrossRef][PubMed]
    [Google Scholar]
  25. Poolman B., Smid E. J., Veldkamp H., Konings W. N.. 1987; Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J Bacteriol169:1460–1468[PubMed]
    [Google Scholar]
  26. Puri P., Eckhardt T. H., Franken L. E., Fusetti F., Stuart M. C., Boekema E. J., Kuipers O. P., Kok J., Poolman B.. 2014; Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization. Mol Microbiol91:394–407 [CrossRef][PubMed]
    [Google Scholar]
  27. Rallu F., Gruss A., Ehrlich S. D., Maguin E.. 2000; Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol35:517–528 [CrossRef][PubMed]
    [Google Scholar]
  28. Redon E., Loubiere P., Cocaign-Bousquet M.. 2005a; Role of mRNA stability during genome-wide adaptation of Lactococcus lactis to carbon starvation. J Biol Chem280:36380–36385 [CrossRef]
    [Google Scholar]
  29. Redon E., Loubiere P., Cocaign-Bousquet M.. 2005b; Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation. J Bacteriol187:3589–3592 [CrossRef]
    [Google Scholar]
  30. Reiss S., Pané-Farré J., Fuchs S., François P., Liebeke M., Schrenzel J., Lindequist U., Lalk M., Wolz C. et al. 2012; Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob Agents Chemother56:787–804 [CrossRef][PubMed]
    [Google Scholar]
  31. Samartzidou H., Widger W. R.. 1998; Transcriptional and posttranscriptional control of mRNA from lrtA, a light-repressed transcript in Synechococcus sp. PCC 7002. Plant Physiol117:225–234 [CrossRef][PubMed]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual, 2nd edn. pp.7–37 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Smyth G. K.. 2005; Limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor , pp.397–420 Edited by Gentleman R., Carey V., Huber W., Irizarry R., Dudoit S.. New York, NY:: Springer;[CrossRef]
    [Google Scholar]
  34. Terzaghi B. E., Sandine W. E.. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  35. Ueta M., Ohniwa R. L., Yoshida H., Maki Y., Wada C., Wada A.. 2008; Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. J Biochem143:425–433 [CrossRef][PubMed]
    [Google Scholar]
  36. Ueta M., Wada C., Wada A.. 2010; Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells15:43–58 [CrossRef][PubMed]
    [Google Scholar]
  37. Ueta M., Wada C., Daifuku T., Sako Y., Bessho Y., Kitamura A., Ohniwa R. L., Morikawa K., Yoshida H. et al. 2013; Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells18:554–574 [CrossRef][PubMed]
    [Google Scholar]
  38. Varmanen P., Ingmer H., Vogensen F. K.. 2000; ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiology146:1447–1455 [CrossRef][PubMed]
    [Google Scholar]
  39. Wada A.. 1998; Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells3:203–208 [CrossRef][PubMed]
    [Google Scholar]
  40. Wada A., Yamazaki Y., Fujita N., Ishihama A.. 1990; Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc Natl Acad Sci U S A87:2657–2661 [CrossRef][PubMed]
    [Google Scholar]
  41. Wada A., Igarashi K., Yoshimura S., Aimoto S., Ishihama A.. 1995; Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli. Biochem Biophys Res Commun214:410–417 [CrossRef][PubMed]
    [Google Scholar]
  42. Willemoës M., Mølgaard A., Johansson E., Martinussen J.. 2005; Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity. FEBS J272:856–864 [CrossRef][PubMed]
    [Google Scholar]
  43. Wolf C., Hochgräfe F., Kusch H., Albrecht D., Hecker M., Engelmann S.. 2008; Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics8:3139–3153 [CrossRef][PubMed]
    [Google Scholar]
  44. Yamagishi M., Matsushima H., Wada A., Sakagami M., Fujita N., Ishihama A.. 1993; Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J12:625–630[PubMed]
    [Google Scholar]
  45. Yoshida H., Wada A.. 2014; The 100S ribosome: ribosomal hibernation induced by stress. Wiley Interdiscip Rev RNA5:723–732 [CrossRef][PubMed]
    [Google Scholar]
  46. Zomer A. L., Buist G., Larsen R., Kok J., Kuipers O. P.. 2007; Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol189:1366–1381 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000362
Loading
/content/journal/micro/10.1099/mic.0.000362
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error