Osmoregulation in via mechanisms other than the high-osmolarity glycerol pathway Free

Abstract

The response of to osmotic stress, whether arising from environmental conditions or physiological processes, has been intensively studied in the last two decades. The well-known high-osmolarity glycerol (HOG) signalling pathway that is induced in response to osmotic stress interacts with other signalling pathways such as the cell wall integrity and the target of rapamycin pathways. Osmotic balance is also maintained by the regulated opening and closing of channel proteins in both the cell membrane and intracellular organelles such as the vacuole. Additionally, environmental stresses, including osmotic shock, induce intracellular calcium signalling. Thus, adaptation to environmental stresses in general, and osmotic stress in particular, is dependent on the concerted action of components of multiple interacting pathways. In this review, we describe some of the major mechanisms and molecules involved in osmoregulation via pathways other than the high-osmolarity glycerol pathway and their known interactions with one another that have been discovered over the last two decades.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000360
2016-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1511.html?itemId=/content/journal/micro/10.1099/mic.0.000360&mimeType=html&fmt=ahah

References

  1. Aguilera J., Rodríguez-Vargas S., Prieto J. A. 2005; The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae: role of the HOG MAP kinase pathway in response to methylglyoxal. Mol Microbiol 56:228–239 [CrossRef]
    [Google Scholar]
  2. Andréasson C., Neve E. P. A., Ljungdahl P. O. 2004; Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast Chichester Engl 21:193–199 [CrossRef]
    [Google Scholar]
  3. Babazadeh R., Adiels C. B., Smedh M., Petelenz-Kurdziel E., Goksör M., Hohmann S. 2013; Osmostress-induced cell volume loss delays yeast Hog1 signaling by limiting diffusion processes and by Hog1-specific effects. PLoS One 8:e80901 [View Article][PubMed]
    [Google Scholar]
  4. Babazadeh R., Furukawa T., Hohmann S., Furukawa K. 2014; Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4:4697 [View Article][PubMed]
    [Google Scholar]
  5. Baltanás R., Bush A., Couto A., Durrieu L., Hohmann S., Colman-Lerner A. 2013; Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Sci Signal 6:ra26 [View Article][PubMed]
    [Google Scholar]
  6. Bañuelos M. A., Sychrová H., Bleykasten-Grosshans C., Souciet J. L., Potier S. 1998; The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiol Read Engl 144:2749–2758 [CrossRef]
    [Google Scholar]
  7. Beck T., Hall M. N. 1999; The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692 [View Article][PubMed]
    [Google Scholar]
  8. Beck T., Schmidt A., Hall M. N. 1999; Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227–1238[PubMed] [CrossRef]
    [Google Scholar]
  9. Beese S. E., Negishi T., Levin D. E. 2009; Identification of positive regulators of the yeast fps1 glycerol channel. PLoS Genet 5:e1000738 [View Article][PubMed]
    [Google Scholar]
  10. Berry D. B., Gasch A. P. 2008; Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587 [View Article][PubMed]
    [Google Scholar]
  11. Bone N., Millar J. B., Toda T., Armstrong J. 1998; Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. Curr Biol 8:135–144[PubMed] [CrossRef]
    [Google Scholar]
  12. Bonilla M., Cunningham K. W. 2003; Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast. Mol Biol Cell 14:4296–4305 [View Article][PubMed]
    [Google Scholar]
  13. Bose S., Dutko J. A., Zitomer R. S. 2005; Genetic factors that regulate the attenuation of the general stress response of yeast. Genetics 169:1215–1226 [View Article][PubMed]
    [Google Scholar]
  14. Bouwman J., Kiewiet J., Lindenbergh A., van Eunen K., Siderius M., Bakker B. M. 2011; Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28:43–53 [View Article][PubMed]
    [Google Scholar]
  15. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132 [View Article][PubMed]
    [Google Scholar]
  16. Brown A. J., Budge S., Kaloriti D., Tillmann A., Jacobsen M. D., Yin Z., Ene I. V., Bohovych I., Sandai D. et al. 2014; Stress adaptation in a pathogenic fungus. J Exp Biol 217:144–155 [View Article][PubMed]
    [Google Scholar]
  17. Burg M. B., Ferraris J. D. 2008; Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313 [View Article][PubMed]
    [Google Scholar]
  18. Caspeta L., Castillo T., Nielsen J. 2015; Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 3:184 [View Article][PubMed]
    [Google Scholar]
  19. Cavinder B., Hamam A., Lew R. R., Trail F. 2011; Mid1, a mechanosensitive calcium ion channel, affects growth, development, and ascospore discharge in the filamentous fungus Gibberella zeae . Eukaryot Cell 10:832–841 [CrossRef]
    [Google Scholar]
  20. Chen C., Wanduragala S., Becker D. F., Dickman M. B. 2006; Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol 72:4001–4006 [View Article][PubMed]
    [Google Scholar]
  21. Crespo J. L., Daicho K., Ushimaru T., Hall M. N. 2001; The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae . J Biol Chem 276:34441–34444 [View Article][PubMed]
    [Google Scholar]
  22. Cui J., Kaandorp J. A., Ositelu O. O., Beaudry V., Knight A., Nanfack Y. F., Cunningham K. W. 2009; Simulating calcium influx and free calcium concentrations in yeast. Cell Calcium 45:123–132 [View Article][PubMed]
    [Google Scholar]
  23. Cunningham K. W., Fink G. R. 1994; Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124:351–363[PubMed] [CrossRef]
    [Google Scholar]
  24. Cunningham K. W., Fink G. R. 1996; Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae . Mol Cell Biol 16:2226–2237[PubMed] [CrossRef]
    [Google Scholar]
  25. Davenport K. R., Sohaskey M., Kamada Y., Levin D. E., Gustin M. C. 1995; A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J Biol Chem 270:30157–30161[PubMed] [CrossRef]
    [Google Scholar]
  26. de Lucena R. M., Elsztein C., Simões D. A., de Morais M. A. 2012; Participation of CWI, HOG and calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 113:629–640 [View Article][PubMed]
    [Google Scholar]
  27. De Virgilio C., Loewith R. 2006; The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481 [View Article][PubMed]
    [Google Scholar]
  28. Delauney A. J., Verma D. P. 1993; Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223 [CrossRef]
    [Google Scholar]
  29. Dodou E., Treisman R. 1997; The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol Cell Biol 17:1848–1859[PubMed] [CrossRef]
    [Google Scholar]
  30. Duskova M., Borovikova D., Herynkova P., Rapoport A., Sychrova H. 2015; The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol Lett 362:1–8 [View Article][PubMed]
    [Google Scholar]
  31. Edwards M. D., Booth I. R., Miller S. 2004; Gating the bacterial mechanosensitive channels: MscS a new paradigm?. Curr Opin Microbiol 7:163–167 [View Article][PubMed]
    [Google Scholar]
  32. Evans D. S., Kapahi P., Hsueh W. C., Kockel L. 2011; TOR signaling never gets old: aging, longevity and TORC1 activity. Ageing Res Rev 10:225–237 [View Article][PubMed]
    [Google Scholar]
  33. Fairman C., Zhou X., Kung C. 1999; Potassium uptake through the TOK1 K+ channel in the budding yeast. J Membr Biol 168:149–157[PubMed] [CrossRef]
    [Google Scholar]
  34. Ferreira C., van Voorst F., Martins A., Neves L., Oliveira R., Kielland-Brandt M. C., Lucas C., Brandt A. 2005; A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae . Mol Biol Cell 16:2068–2076 [View Article][PubMed]
    [Google Scholar]
  35. Fuchs B. B., Mylonakis E. 2009; Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and crosstalk with other stress response pathways. Eukaryot Cell 8:1616–1625 [CrossRef]
    [Google Scholar]
  36. García R., Sanz A. B., Rodríguez-Peña J. M., Nombela C., Arroyo J. 2016; Rlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression. J Cell Sci 129:1649–1660 [View Article][PubMed]
    [Google Scholar]
  37. García-Rodríguez L. J., Valle R., Durán A., Roncero C. 2005; Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579:6186–6190 [View Article][PubMed]
    [Google Scholar]
  38. Gasch A. P. 2007; Comparative genomics of the environmental stress response in ascomycete fungi. Yeast Chichester Engl 24:961–976 [CrossRef]
    [Google Scholar]
  39. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257[PubMed] [CrossRef]
    [Google Scholar]
  40. Geijer C., Ahmadpour D., Palmgren M., Filipsson C., Klein D. M., Tamás M. J., Hohmann S., Lindkvist-Petersson K. 2012; Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport. J Biol Chem 287:23562–23570 [View Article][PubMed]
    [Google Scholar]
  41. Geijer C., Medrala-Klein D., Petelenz-Kurdziel E., Ericsson A., Smedh M., Andersson M., Goksör M., Nadal-Ribelles M., Posas F. et al. 2013; Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. FEBS J 280:3854–3867 [View Article][PubMed]
    [Google Scholar]
  42. Gonzalez-Hernandez J. C. 2010; AQY1 gene from Debaryomyces hansenii . Afr J Biochem Res 4:126–133
    [Google Scholar]
  43. Hahn J. S., Thiele D. J. 2002; Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284 [View Article][PubMed]
    [Google Scholar]
  44. Hayes B. M., Anderson M. A., Traven A., van der Weerden N. L., Bleackley M. R. 2014; Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cell Mol Life Sci 71:2651–2666 [View Article][PubMed]
    [Google Scholar]
  45. Hedfalk K., Bill R. M., Mullins J. G. L., Karlgren S., Filipsson C., Bergstrom J., Tamás M. J., Rydström J., Hohmann S. 2004; A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p. J Biol Chem 279:14954–14960 [CrossRef]
    [Google Scholar]
  46. Hickman M. J., Spatt D., Winston F. 2011; The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae . Genetics 188:325–338 [View Article][PubMed]
    [Google Scholar]
  47. Hohmann S. 2002a; Osmotic adaptation in yeast-control of the yeast osmolyte system. Int Rev Cytol 215:149–187 [CrossRef]
    [Google Scholar]
  48. Hohmann S. 2002b; Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev MMBR 66:300–372 [CrossRef]
    [Google Scholar]
  49. Holst B., Lunde C., Lages F., Oliveira R., Lucas C., Kielland-Brandt M. C. 2000; GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae . Mol Microbiol 37:108–124[PubMed] [CrossRef]
    [Google Scholar]
  50. Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y. 1994; MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14:8259–8271[PubMed] [CrossRef]
    [Google Scholar]
  51. Iida K., Tada T., Iida H. 2004; Molecular cloning in yeast by in vivo homologous recombination of the yeast putative α1 subunit of the voltage-gated calcium channel. FEBS Lett 576:291–296 [View Article][PubMed]
    [Google Scholar]
  52. Karlgren S., Filipsson C., Mullins J. G. L., Bill R. M., Tamás M. J., Hohmann S. 2004; Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. Eur J Biochem FEBS 271:771–779 [CrossRef]
    [Google Scholar]
  53. Karlgren S., Pettersson N., Nordlander B., Mathai J. C., Brodsky J. L., Zeidel M. L., Bill R. M., Hohmann S. 2005; Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J Biol Chem 280:7186–7193 [View Article][PubMed]
    [Google Scholar]
  54. Kaserer A. O., Andi B., Cook P. F., West A. H. 2009; Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae . Biochemistry 48:8044–8050 [CrossRef]
    [Google Scholar]
  55. Ke R., Ingram P. J., Haynes K. 2013; An integrative model of ion regulation in yeast. PLoS Comput Biol 9:e1002879 [View Article][PubMed]
    [Google Scholar]
  56. Ko C. H., Gaber R. F. 1991; TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae . Mol Cell Biol 11:4266–4273[PubMed] [CrossRef]
    [Google Scholar]
  57. Kodedová M., Sychrová H. 2015; Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae . PLoS One 10:e0139306 [View Article][PubMed]
    [Google Scholar]
  58. Krantz M., Nordlander B., Valadi H., Johansson M., Gustafsson L., Hohmann S. 2004; Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot Cell 3:1381–1390 [CrossRef]
    [Google Scholar]
  59. Lawrence C. L., Botting C. H., Antrobus R., Coote P. J. 2004; Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24:3307–3323 [View Article][PubMed]
    [Google Scholar]
  60. Lee J., Reiter W., Dohnal I., Gregori C., Beese-Sims S., Kuchler K., Ammerer G., Levin D. E. 2013; MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27:2590–2601 [View Article][PubMed]
    [Google Scholar]
  61. Lee Y. J., Jeschke G. R., Roelants F. M., Thorner J., Turk B. E. 2012; Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol 32:4705–4717 [View Article][PubMed]
    [Google Scholar]
  62. Levin D. E. 2011; Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175 [View Article][PubMed]
    [Google Scholar]
  63. Li S., Ault A., Malone C. L., Raitt D., Dean S., Johnston L. H., Deschenes R. J., Fassler J. S. 1998; The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J 17:6952–6962 [View Article][PubMed]
    [Google Scholar]
  64. Liu S., Hou Y., Liu W., Lu C., Wang W., Sun S. 2015; Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryot Cell 14:324–334 [View Article][PubMed]
    [Google Scholar]
  65. Ljungdahl P. O. 2009; Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37:242–247 [View Article][PubMed]
    [Google Scholar]
  66. Locke E. G., Bonilla M., Liang L., Takita Y., Cunningham K. W. 2000; A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol 20:6686–6694[PubMed] [CrossRef]
    [Google Scholar]
  67. Loewith R., Hall M. N. 2011; Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201 [View Article][PubMed]
    [Google Scholar]
  68. Loewith R. 2011; A brief history of TOR. Biochem Soc Trans 39:437–442 [View Article][PubMed]
    [Google Scholar]
  69. Madaule P., Axel R. 1985; A novel ras-related gene family. Cell 41:31–40[PubMed] [CrossRef]
    [Google Scholar]
  70. Madden K., Sheu Y. J., Baetz K., Andrews B., Snyder M. 1997; SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:1781–1784[PubMed] [CrossRef]
    [Google Scholar]
  71. Martin D. C., Kim H., Mackin N. A., Maldonado-Báez L., Evangelista C. C., Beaudry V. G., Dudgeon D. D., Naiman D. Q., Erdman S. E., Cunningham K. W. 2011; New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J Biol Chem 286:10744–10754 [View Article][PubMed]
    [Google Scholar]
  72. Martinac B., Saimi Y., Kung C. 2008; Ion channels in microbes. Physiol Rev 88:1449–1490 [CrossRef]
    [Google Scholar]
  73. Matheos D. P., Kingsbury T. J., Ahsan U. S., Cunningham K. W. 1997; Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae . Genes Dev 11:3445–3458[PubMed] [CrossRef]
    [Google Scholar]
  74. Matsumoto T. K., Ellsmore A. J., Cessna S. G., Low P. S., Pardo J. M., Bressan R. A., Hasegawa P. M. 2002; An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae . J Biol Chem 277:33075–33080 [View Article][PubMed]
    [Google Scholar]
  75. Medvedik O., Lamming D. W., Kim K. D., Sinclair D. A. 2007; MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae . PLoS Biol 5:e261 [View Article][PubMed]
    [Google Scholar]
  76. Mettetal J. T., Muzzey D., Gómez-Uribe C., van Oudenaarden A. 2008; The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae . Science 319:482–484 [View Article][PubMed]
    [Google Scholar]
  77. Michaillat L., Mayer A. 2013; Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae . PLoS One 8:e54160 [View Article][PubMed]
    [Google Scholar]
  78. Michaillat L., Baars T. L., Mayer A. 2012; Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23:881–895 [View Article][PubMed]
    [Google Scholar]
  79. Miermont A., Waharte F., Hu S., McClean M. N., Bottani S., Léon S., Hersen P. 2013; Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc Natl Acad Sci U S A 110:5725–5730 [View Article][PubMed]
    [Google Scholar]
  80. Miyamoto M., Furuichi Y., Komiyama T. 2012; The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Yeast 29:475–485 [View Article][PubMed]
    [Google Scholar]
  81. Moat A. G. 2002 Microbial Physiology, 4th edn. New York, NY: Wiley-Liss; [CrossRef]
    [Google Scholar]
  82. Montañés F. M., Pascual-Ahuir A., Proft M. 2011; Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors: stress-mediated repression of ergosterol biosynthesis. Mol Microbiol 79:1008–1023 [CrossRef]
    [Google Scholar]
  83. Muir A., Roelants F. M., Timmons G., Leskoske K. L., Thorner J. 2015; Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress. eLife 4:e09336 [View Article]
    [Google Scholar]
  84. Muller E. M., Locke E. G., Cunningham K. W. 2001; Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae . Genetics 159:1527–1538[PubMed]
    [Google Scholar]
  85. Muller E. M., Mackin N. A., Erdman S. E., Cunningham K. W. 2003; Fig1p facilitates Ca2+ influx and cell fusion during mating of Saccharomyces cerevisiae . J Biol Chem 278:38461–38469 [View Article][PubMed]
    [Google Scholar]
  86. Nass R., Rao R. 1999; The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiol Read Engl 145:3221–3228 [CrossRef]
    [Google Scholar]
  87. Natarajan K., Meyer M. R., Jackson B. M., Slade D., Roberts C., Hinnebusch A. G., Marton M. J. 2001; Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368 [View Article][PubMed]
    [Google Scholar]
  88. Newman J. R., Ghaemmaghami S., Ihmels J., Breslow D. K., Noble M., DeRisi J. L., Weissman J. S. 2006; Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–846 [View Article][PubMed]
    [Google Scholar]
  89. Nikolaou E., Agrafioti I., Stumpf M., Quinn J., Stansfield I., Brown A. J. 2009; Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44 [View Article][PubMed]
    [Google Scholar]
  90. Nonaka H., Tanaka K., Hirano H., Fujiwara T., Kohno H., Umikawa M., Mino A., Takai Y. 1995; A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae . EMBO J 14:5931–5938[PubMed]
    [Google Scholar]
  91. Oliveira R., Lucas C. 2004; Expression studies of GUP1 and GUP2, genes involved in glycerol active transport in Saccharomyces cerevisiae, using semi-quantitative RT-PCR. Curr Genet 46:140–146 [View Article][PubMed]
    [Google Scholar]
  92. Omasits U., Ahrens C. H., Müller S., Wollscheid B. 2014; Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886 [View Article][PubMed]
    [Google Scholar]
  93. Pagán-Mercado G., Santiago-Cartagena E., Akamine P., Rodríguez-Medina J. R. 2012; Functional and genetic interactions of TOR in the budding yeast Saccharomyces cerevisiae with myosin type II-deficiency (myo1Δ). BMC Cell Biol 13:13 [View Article][PubMed]
    [Google Scholar]
  94. Panadero J., Pallotti C., Rodríguez-Vargas S., Randez-Gil F., Prieto J. A. 2006; A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae . J Biol Chem 281:4638–4645 [View Article][PubMed]
    [Google Scholar]
  95. Qadota H., Python C. P., Inoue S. B., Arisawa M., Anraku Y., Zheng Y., Watanabe T., Levin D. E., Ohya Y. 1996; Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272:279–281[PubMed] [CrossRef]
    [Google Scholar]
  96. Qiu Q. S., Fratti R. A. 2010; The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 123:3266–3275 [View Article][PubMed]
    [Google Scholar]
  97. Reed R. H., Chudek J. A., Foster R., Gadd G. M. 1987; Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl Environ Microbiol 53:2119–2123[PubMed]
    [Google Scholar]
  98. Rep M., Krantz M., Thevelein J. M., Hohmann S. 2000; The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300 [CrossRef]
    [Google Scholar]
  99. Roberts S. K., McAinsh M., Widdicks L. 2012; Cch1p mediates Ca2+ influx to protect Saccharomyces cerevisiae against eugenol toxicity. PLoS One 7:e43989 [View Article][PubMed]
    [Google Scholar]
  100. Schleit J., Wasko B. M., Kaeberlein M. 2012; Yeast as a model to understand the interaction between genotype and the response to calorie restriction. FEBS Lett 586:2868–2873 [View Article][PubMed]
    [Google Scholar]
  101. Schmidt A., Beck T., Koller A., Kunz J., Hall M. N. 1998; The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17:6924–6931 [View Article][PubMed]
    [Google Scholar]
  102. Shitamukai A., Hirata D., Sonobe S., Miyakawa T. 2004; Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae . J Biol Chem 279:3651–3661 [View Article][PubMed]
    [Google Scholar]
  103. Siderius M., Van Wuytswinkel O., Reijenga K. A., Kelders M., Mager W. H. 2000; The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature. Mol Microbiol 36:1381–1390[PubMed] [CrossRef]
    [Google Scholar]
  104. Springael J. Y., André B. 1998; Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae . Mol Biol Cell 9:1253–1263[PubMed] [CrossRef]
    [Google Scholar]
  105. Staschke K. A., Dey S., Zaborske J. M., Palam L. R., McClintick J. N., Pan T., Edenberg H. J., Wek R. C. 2010; Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285:16893–16911 [View Article][PubMed]
    [Google Scholar]
  106. Stathopoulos A. M., Cyert M. S. 1997; Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11:3432–3444[PubMed] [CrossRef]
    [Google Scholar]
  107. Szabados L., Savouré A. 2010; Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 [View Article][PubMed]
    [Google Scholar]
  108. Tamás M. J., Karlgren S., Bill R. M., Hedfalk K., Allegri L., Ferreira M., Thevelein J. M., Rydström J., Mullins J. G., Hohmann S. 2003; A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278:6337–6345 [View Article][PubMed]
    [Google Scholar]
  109. Tamás M. J., Luyten K., Sutherland F. C., Hernandez A., Albertyn J., Valadi H., Li H., Prior B. A., Kilian S. G. et al. 1999; Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104[PubMed] [CrossRef]
    [Google Scholar]
  110. Tanigawa M., Kihara A., Terashima M., Takahara T., Maeda T. 2012; Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol Cell Biol 32:2861–2870 [View Article][PubMed]
    [Google Scholar]
  111. Teng J., Iida K., Imai A., Nakano M., Tada T., Iida H. 2013; Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology 159:970–979 [View Article][PubMed]
    [Google Scholar]
  112. Thewes S. 2014; Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryot Cell 13:694–705 [View Article][PubMed]
    [Google Scholar]
  113. Thorsen M., Di Y., Tängemo C., Morillas M., Ahmadpour D., Van der Does C., Wagner A., Johansson E., Boman J. et al. 2006; The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17:4400–4410 [View Article][PubMed]
    [Google Scholar]
  114. Todeschini A. L., Condon C., Bénard L. 2006; Sodium-induced GCN4 expression controls the accumulation of the 5′ to 3′ RNA degradation inhibitor, 3′-phosphoadenosine 5′-phosphate. J Biol Chem 281:3276–3282 [View Article][PubMed]
    [Google Scholar]
  115. Varnam A. H. 2000 Environmental Microbiology London, UK: Manson; [CrossRef]
    [Google Scholar]
  116. Viney M., Reece S. E. 2013; Adaptive noise. Proc R Soc B Biol Sci 280:20131104 [View Article]
    [Google Scholar]
  117. Wang S., Cao J., Liu X., Hu H., Shi J., Zhang S., Keller N. P., Lu L. 2012; Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus nidulans . PLoS One 7:e46564 [View Article][PubMed]
    [Google Scholar]
  118. Wang X., Sheff M. A., Simpson D. M., Elion E. A. 2011; Ste11p MEKK signals through HOG, mating, calcineurin and PKC pathways to regulate the FKS2 gene. BMC Mol Biol 12:51 [View Article][PubMed]
    [Google Scholar]
  119. Watanabe Y., Irie K., Matsumoto K. 1995; Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15:5740–5749[PubMed] [CrossRef]
    [Google Scholar]
  120. Westfall P. J., Patterson J. C., Chen R. E., Thorner J. 2008; Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci U S A 105:12212–12217 [View Article][PubMed]
    [Google Scholar]
  121. Williams K. E., Cyert M. S. 2001; The eukaryotic response regulator Skn7p regulates calcineurin signaling through stabilization of Crz1p. EMBO J 20:3473–3483 [View Article][PubMed]
    [Google Scholar]
  122. Winkler A., Arkind C., Mattison C. P., Burkholder A., Knoche K., Ota I. 2002; Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173 [View Article][PubMed]
    [Google Scholar]
  123. Wolfe D. M., Pearce D. A. 2006; Channeling studies in yeast: yeast as a model for channelopathies?. Neuromolecular Med 8:279–306 [View Article][PubMed]
    [Google Scholar]
  124. Yale J., Bohnert H. J. 2001; Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007 [View Article][PubMed]
    [Google Scholar]
  125. Yoko-o T., Ichikawa D., Miyagishi Y., Kato A., Umemura M., Takase K., Ra M., Ikeda K., Taguchi R., Jigami Y. 2013; Determination and physiological roles of the glycosylphosphatidylinositol lipid remodelling pathway in yeast: GPI lipid remodelling pathway in S. cerevisiae . Mol Microbiol 88:140–155 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000360
Loading
/content/journal/micro/10.1099/mic.0.000360
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed