1887

Abstract

σ factors are single subunit general transcription factors that reversibly bind core RNA polymerase and mediate gene-specific transcription in bacteria. Previously, an atypical two-subunit σ factor was identified that activates transcription from a group of related promoters in Bacillus subtilis. Both of the subunits, named SigO and RsoA, share primary sequence similarity with the canonical σ family of σ factors and interact with each other and with RNA polymerase subunits. Here we show that the σ region 2.3-like segment of RsoA is unexpectedly sufficient for interaction with the amino-terminus of SigO and the β′ subunit. A mutational analysis of RsoA identified aromatic residues conserved amongst all RsoA homologues, and often amongst canonical σ factors, that are particularly important for the SigO–RsoA interaction. In a canonical σ factor, region 2.3 amino acids bind non-template strand DNA, trapping the promoter in a single-stranded state required for initiation of transcription. Accordingly, we speculate that RsoA region 2.3 protein-binding activity likely arose from a motif that, at least in its ancestral protein, participated in DNA-binding interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000358
2016-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1857.html?itemId=/content/journal/micro/10.1099/mic.0.000358&mimeType=html&fmt=ahah

References

  1. Arthur T. M., Burgess R. R..( 1998;). Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit. . J Biol Chem 273: 31381–31387. [CrossRef] [PubMed]
    [Google Scholar]
  2. Banta A. B., Chumanov R. S., Yuan A. H., Lin H., Campbell E. A., Burgess R. R., Gourse R. L..( 2013;). Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme. . Proc Natl Acad Sci U S A 110: 15955–15960. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bao X., Nickels B. E., Fan H..( 2012;). Chlamydia trachomatis protein GrgA activates transcription by contacting the nonconserved region of σ66. . Proc Natl Acad Sci U S A 109: 16870–16875. [CrossRef] [PubMed]
    [Google Scholar]
  4. Battesti A., Bouveret E..( 2012;). The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. . Methods 58: 325–334. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bhandari V., Ahmod N. Z., Shah H. N., Gupta R. S..( 2013;). Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. . Int J Syst Evol Microbiol 63: 2712–2726. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K..( 1969;). Factor stimulating transcription by RNA polymerase. . Nature 221: 43–46. [CrossRef] [PubMed]
    [Google Scholar]
  7. Campagne S., Marsh M. E., Capitani G., Vorholt J. A., Allain F. H..( 2014;). Structural basis for −10 promoter element melting by environmentally induced sigma factors. . Nat Struct Mol Biol 21: 269–276. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cole C., Barber J. D., Barton G. J..( 2008;). The Jpred 3 secondary structure prediction server. . Nucleic Acids Res 36: W197–W201. [CrossRef] [PubMed]
    [Google Scholar]
  9. Davey N. E., Van Roey K., Weatheritt R. J., Toedt G., Uyar B., Altenberg B., Budd A., Diella F., Dinkel H., Gibson T. J..( 2012;). Attributes of short linear motifs. . Mol Biosyst 8: 268–281. [CrossRef] [PubMed]
    [Google Scholar]
  10. deHaseth P. L., Helmann J. D..( 1995;). Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA. . Mol Microbiol 16: 817–824. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dove S. L., Hochschild A..( 2004;). A bacterial two-hybrid system based on transcription activation. . Methods Mol Biol 261: 231–246. [CrossRef] [PubMed]
    [Google Scholar]
  12. Feklistov A., Darst S. A..( 2011;). Structural basis for promoter −10 element recognition by the bacterial RNA polymerase σ subunit. . Cell 147: 1257–1269. [CrossRef] [PubMed]
    [Google Scholar]
  13. Geszvain K., Gruber T. M., Mooney R. A., Gross C. A., Landick R..( 2004;). A hydrophobic patch on the flap-tip helix of E.coli RNA polymerase mediates sigma(70) region 4 function. . J Mol Biol 343: 569–587. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gribskov M., Burgess R. R..( 1986;). Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. . Nucleic Acids Res 14: 6745–6763. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gundlach J., Rath H., Herzberg C., Mäder U., Stülke J..( 2016;). Second messenger signaling in Bacillus subtilis: Accumulation of cyclic di-AMP inhibits biofilm formation. . Front Microbiol 7: 804. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hachmann A. B., Angert E. R., Helmann J. D..( 2009;). Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. . Antimicrob Agents Chemother 53: 1598–1609. [CrossRef] [PubMed]
    [Google Scholar]
  17. Helmann J. D..( 2002;). The extracytoplasmic function (ECF) sigma factors. . Adv Microb Physiol 46: 47–110.[PubMed] [CrossRef]
    [Google Scholar]
  18. Helmann J. D., Chamberlin M. J..( 1988;). Structure and function of bacterial sigma factors. . Annu Rev Biochem 57: 839–872. [CrossRef] [PubMed]
    [Google Scholar]
  19. Johnston E. B., Lewis P. J., Griffith R..( 2009;). The interaction of Bacillus subtilis sigmaA with RNA polymerase. . Protein Sci 18: 2287–2297. [CrossRef] [PubMed]
    [Google Scholar]
  20. Juang Y. L., Helmann J. D..( 1994;). A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. . J Mol Biol 235: 1470–1488. [CrossRef] [PubMed]
    [Google Scholar]
  21. Karimova G., Pidoux J., Ullmann A., Ladant D..( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95: 5752–5756. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kuznedelov K., Minakhin L., Niedziela-Majka A., Dove S. L., Rogulja D., Nickels B. E., Hochschild A., Heyduk T., Severinov K..( 2002;). A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. . Science 295: 855–857. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu B., Zuo Y., Steitz T. A..( 2016;). Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. . Proc Natl Acad Sci U S A 113: 4051–4056.[CrossRef]
    [Google Scholar]
  24. Lonetto M., Gribskov M., Gross C. A..( 1992;). The sigma 70 family: sequence conservation and evolutionary relationships. . J Bacteriol 174: 3843–3849.[PubMed]
    [Google Scholar]
  25. Ma C., Yang X., Kandemir H., Mielczarek M., Johnston E. B., Griffith R., Kumar N., Lewis P. J..( 2013;). Inhibitors of bacterial transcription initiation complex formation. . ACS Chem Biol 8: 1972–1980. [CrossRef] [PubMed]
    [Google Scholar]
  26. MacLellan S. R., Wecke T., Helmann J. D..( 2008;). A previously unidentified sigma factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis. . Mol Microbiol 69: 954–967. [CrossRef] [PubMed]
    [Google Scholar]
  27. MacLellan S. R., Helmann J. D., Antelmann H..( 2009a;). The YvrI alternative σ factor Is essential for acid stress induction of oxalate decarboxylase in Bacillus subtilis. . J Bacteriol 191: 931–939. [CrossRef] [PubMed]
    [Google Scholar]
  28. MacLellan S. R., Guariglia-Oropeza V., Gaballa A., Helmann J. D..( 2009b;). A two-subunit bacterial σ-factor activates transcription in Bacillus subtilis. . Proc Natl Acad Sci 106: 21323–21328. [CrossRef]
    [Google Scholar]
  29. Malhotra A., Severinova E., Darst S. A..( 1996;). Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. . Cell 87: 127–136. [CrossRef] [PubMed]
    [Google Scholar]
  30. Missiakas D., Raina S..( 1998;). The extracytoplasmic function sigma factors: role and regulation. . Mol Microbiol 28: 1059–1066. [CrossRef] [PubMed]
    [Google Scholar]
  31. Monteil V., Kolb A., Mayer C., Hoos S., England P., Norel F..( 2010;). Crl binds to domain 2 of σ(S) and confers a competitive advantage on a natural rpoS mutant of Salmonella enterica serovar Typhi. . J Bacteriol 192: 6401–6410. [CrossRef] [PubMed]
    [Google Scholar]
  32. Murakami K. S..( 2013;). X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. . J Biol Chem 288: 9126–9134. [CrossRef] [PubMed]
    [Google Scholar]
  33. Murakami K. S..( 2015;). Structural biology of bacterial RNA polymerase. . Biomolecules 5: 848–864. [CrossRef] [PubMed]
    [Google Scholar]
  34. Murakami K. S., Darst S. A..( 2003;). Bacterial RNA polymerases: the wholo story. . Curr Opin Struct Biol 13: 31–39. [CrossRef] [PubMed]
    [Google Scholar]
  35. Neduva V., Russell R. B..( 2005;). Linear motifs: evolutionary interaction switches. . FEBS Lett 579: 3342–3345. [CrossRef] [PubMed]
    [Google Scholar]
  36. Paget M. S. B., Helmann J. D..( 2003;). The sigma70 family of sigma factors. . Genome Biol 4: 203.[PubMed] [CrossRef]
    [Google Scholar]
  37. Panaghie G., Aiyar S. E., Bobb K. L., Hayward R. S., de Haseth P. L..( 2000;). Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex. . J Mol Biol 299: 1217–1230. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rong J. C., Helmann J. D..( 1994;). Genetic and physiological studies of Bacillus subtilis sigma A mutants defective in promoter melting. . J Bacteriol 176: 5218–5224.[PubMed]
    [Google Scholar]
  39. Sengupta S., Prajapati R. K., Mukhopadhyay J..( 2015;). Promoter escape with bacterial two-component σ factor suggests retention of σ region two in the elongation complex. . J Biol Chem 290: 28575–28583. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al.( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. . Mol Syst Biol 7: 539. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tabib-Salazar A., Liu B., Doughty P., Lewis R. A., Ghosh S., Parsy M. L., Simpson P. J., O'Dwyer K., Matthews S. J., Paget M. S..( 2013;). The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase. . Nucleic Acids Res 41: 5679–5691. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tanaka K., Takayanagi Y., Fujita N., Ishihama A., Takahashi H..( 1993;). Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. . Proc Natl Acad Sci U S A 90: 3511–3515. [CrossRef] [PubMed]
    [Google Scholar]
  43. Van Roey K., Uyar B., Weatheritt R. J., Dinkel H., Seiler M., Budd A., Gibson T. J., Davey N. E..( 2014;). Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. . Chem Rev 114: 6733–6778. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wagner G. P., Lynch V. J..( 2008;). The gene regulatory logic of transcription factor evolution. . Trends Ecol Evol 23: 377–385. [CrossRef]
    [Google Scholar]
  45. Zuo Y., Steitz T. A..( 2015;). Crystal structures of the E. coli transcription initiation complexes with a complete bubble. . Mol Cell 58: 534–540. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000358
Loading
/content/journal/micro/10.1099/mic.0.000358
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error