1887

Abstract

During passage through the gastrointestinal tract, enterohaemorrhagic Escherichia coli (EHEC) encounters numerous stresses, each producing unique antimicrobial conditions. Beyond surviving these stresses, EHEC may also use them as cues about the local microenvironment to modulate its virulence. Of particular interest is how exposure to changing concentrations of short-chain fatty acids (SCFAs) associated with passage through the small and large intestines affects EHEC virulence, as well as flagella expression and motility specifically. In this study, we investigate the impact of exposure to SCFA mixes simulating concentrations and compositions within the small and large intestines on EHEC flagella expression and function. Using a combination of DNA microarray, quantitative real-time PCR, immunoblot analysis, flow cytometry and motility assays, we show that there is a marked, significant upregulation of flagellar genes, the flagellar protein, FliC, and motility when EHEC is exposed to SCFA mixes representative of the small intestine. By contrast, when EHEC is exposed to SCFA mixes representative of the large intestine, there is a significant downregulation of flagellar genes, FliC and motility. Our results demonstrate that EHEC modulates flagella expression and motility in response to SCFAs, with differential responses associated with SCFA mixes typical of the small and large intestines. This research contributes to our understanding of how EHEC senses and responds to host environmental signals and the mechanisms it uses to successfully infect the human host. Significantly, it also suggests that EHEC is using this key gastrointestinal chemical signpost to cue changes in flagella expression and motility in different locations within the host intestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000357
2016-10-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1761.html?itemId=/content/journal/micro/10.1099/mic.0.000357&mimeType=html&fmt=ahah

References

  1. Akerley B. J., Cotter P. A., Miller J. F..( 1995;). Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. . Cell 80: 611–620. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allison S. E., Silphaduang U., Mascarenhas M., Konczy P., Quan Q., Karmali M., Coombes B. K..( 2012;). Novel repressor of Escherichia coli O157:H7 motility encoded in the putative fimbrial cluster OI-1. . J Bacteriol 194: 5343–5352. [CrossRef] [PubMed]
    [Google Scholar]
  3. Argenzio R. A., Southworth M., Stevens C. E..( 1974;). Sites of organic acid production and absorption in the equine gastrointestinal tract. . Am J Physiol 226: 1043–1050.[PubMed]
    [Google Scholar]
  4. Arnold C. N., McElhanon J., Lee A., Leonhart R., Siegele D. A..( 2001;). Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. . J Bacteriol 183: 2178–2186. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bailey J. S., Blankenship L. C., Cox N. A..( 1991;). Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. . Poult Sci 70: 2433–2438. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bannas P., Fraedrich K., Treszl A., Bley T. A., Herrmann J., Habermann C. R., Derlin T., Henes F. O., Wenzel U. et al.( 2013;). Shiga toxin-producing E. coli O104:H4 outbreak 2011 in Germany: radiological features of enterohemorrhagic colitis. . Rofo 185: 434–439. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bohnoff M., Miller C. P., Martin W. R..( 1964a;). Resistance of the mouse’s intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. . J Exp Med 120: 805–816.[CrossRef]
    [Google Scholar]
  8. Bohnoff M., Miller C. P., Martin W. R..( 1964b;). Resistance of the mouse’s intestinal tract to experimental Salmonella infection. II. Factors responsible for its loss following streptomycin treatment. . J Exp Med 120: 817–828.[CrossRef]
    [Google Scholar]
  9. Cecchini G., Schröder I., Gunsalus R. P., Maklashina E..( 2002;). Succinate dehydrogenase and fumarate reductase from Escherichia coli. . Biochim Biophys Acta 1553: 140–157. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cummings J. H., Macfarlane G. T..( 1991;). The control and consequences of bacterial fermentation in the human colon. . J Appl Bacteriol 70: 443–459. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cummings J. H., Pomare E. W., Branch W. J., Naylor C. P., Macfarlane G. T..( 1987;). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. . Gut 28: 1221–1227. [CrossRef] [PubMed]
    [Google Scholar]
  12. den Besten G., Lange K., Havinga R., van Dijk T. H., Gerding A., van Eunen K., Müller M., Groen A. K., Hooiveld G. J. et al.( 2013;). Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. . Am J Physiol Gastrointest Liver Physiol 305: G900–G910. [CrossRef] [PubMed]
    [Google Scholar]
  13. Durant J. A., Corrier D. E., Byrd J. A., Stanker L. H., Ricke S. C..( 1999;). Feed deprivation affects crop environment and modulates Salmonella enteritidis colonization and invasion of leghorn hens. . Appl Environ Microbiol 65: 1919–1923.[PubMed]
    [Google Scholar]
  14. Fukata T., Sasai K., Miyamoto T., Baba E..( 1999;). Inhibitory effects of competitive exclusion and fructooligosaccharide, singly and in combination, on Salmonella colonization of chicks. . J Food Prot 62: 229–233.[PubMed]
    [Google Scholar]
  15. Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., Hinton J. C., Van Immerseel F..( 2006;). Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. . Appl Environ Microbiol 72: 946–949. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gilbert R. A., Denman S. E., Padmanabha J., Fegan N., Al Ajmi D., McSweeney C. S..( 2008;). Effect of diet on the concentration of complex Shiga toxin-producing Escherichia coli and EHEC virulence genes in bovine faeces, hide and carcass. . Int J Food Microbiol 121: 208–216. [CrossRef] [PubMed]
    [Google Scholar]
  17. Henningsson A. M., Margareta E., Nyman G. L., Björck I. M..( 2003;). Influences of dietary adaptation and source of resistant starch on short-chain fatty acids in the hindgut of rats. . Br J Nutr 89: 319–328. [CrossRef] [PubMed]
    [Google Scholar]
  18. Herold S., Paton J. C., Srimanote P., Paton A. W..( 2009;). Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. . Microbiology 155: 3554–3563. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kendall M. M., Gruber C. C., Rasko D. A., Hughes D. T., Sperandio V..( 2011;). Hfq virulence regulation in enterohemorrhagic Escherichia coli O157:H7 strain 86-24. . J Bacteriol 193: 6843–6851. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kus J. V., Gebremedhin A., Dang V., Tran S. L., Serbanescu A., Barnett Foster D..( 2011;). Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. . J Bacteriol 193: 4509–4515. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kwon Y. M., Ricke S. C..( 1998;). Induction of acid resistance of Salmonella typhimurium by exposure to short-chain fatty acids. . Appl Environ Microbiol 64: 3458–3463.[PubMed]
    [Google Scholar]
  22. Lawhon S. D., Frye J. G., Suyemoto M., Porwollik S., McClelland M., Altier C..( 2003;). Global regulation by CsrA in Salmonella typhimurium. . Mol Microbiol 48: 1633–1645. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lehti T. A., Heikkinen J., Korhonen T. K., Westerlund-Wikström B..( 2012;). The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli. . J Bacteriol 194: 3475–3485. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lewis S. B., Cook V., Tighe R., Schüller S..( 2015;). Enterohemorrhagic Escherichia coli colonization of human colonic epithelium in vitro and ex vivo. . Infect Immun 83: 942–949. [CrossRef] [PubMed]
    [Google Scholar]
  25. Li X., Rasko D. A., Lockatell C. V., Johnson D. E., Mobley H. L..( 2001;). Repression of bacterial motility by a novel fimbrial gene product. . EMBO J 20: 4854–4862. [CrossRef] [PubMed]
    [Google Scholar]
  26. Macfarlane G. T., Gibson G. R., Cummings J. H..( 1992;). Comparison of fermentation reactions in different regions of the human colon. . J Appl Bacteriol 72: 57–64. [CrossRef] [PubMed]
    [Google Scholar]
  27. Manso I., Torres B., Andreu J. M., Menéndez M., Rivas G., Alfonso C., Díaz E., García J. L., Galán B..( 2009;). 3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli. . J Biol Chem 284: 21218–21228. [CrossRef] [PubMed]
    [Google Scholar]
  28. Masuda N., Church G. M..( 2003;). Regulatory network of acid resistance genes in Escherichia coli. . Mol Microbiol 48: 699–712. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mellies J. L., Lorenzen E..( 2014;). Enterohemorrhagic Escherichia coli virulence gene regulation. . Microbiol Spectr 2: 1–17. [CrossRef]
    [Google Scholar]
  30. Meynell G. G., Subbaiah T. V..( 1963;). Antibacterial mechanisms of the mouse gut. I. Kinetics of infection by Salmonella typhi-murium in normal and streptomycin-treated mice studied with abortive transductants. . Br J Exp Pathol 44: 197–208.[PubMed]
    [Google Scholar]
  31. Meynell G. G..( 1963;). Antibacterial mechanisms of the mouse gut. II. the role of Eh and volatile fatty acids in the normal gut. . Br J Exp Pathol 44: 209–219.[PubMed]
    [Google Scholar]
  32. Momose Y., Hirayama K., Itoh K..( 2008;). Effect of organic acids on inhibition of Escherichia coli O157:H7 colonization in gnotobiotic mice associated with infant intestinal microbiota. . Antonie Van Leeuwenhoek 93: 141–149. [CrossRef] [PubMed]
    [Google Scholar]
  33. Morgan J. K., Vendura K. W., Stevens S. M., Riordan J. T..( 2013;). RcsB determines the locus of enterocyte effacement (LEE) expression and adherence phenotype of Escherichia coli O157 : H7 spinach outbreak strain TW14359 and coordinates bicarbonate-dependent LEE activation with repression of motility. . Microbiology 159: 2342–2353. [CrossRef] [PubMed]
    [Google Scholar]
  34. Nakanishi N., Tashiro K., Kuhara S., Hayashi T., Sugimoto N., Tobe T..( 2009;). Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. . Microbiology 155: 521–530. [CrossRef] [PubMed]
    [Google Scholar]
  35. Naughton P. J., Mikkelsen L. L., Jensen B. B..( 2001;). Effects of nondigestible oligosaccharides on Salmonella enterica serovar Typhimurium and nonpathogenic Escherichia coli in the pig small intestine in vitro. . Appl Environ Microbiol 67: 3391–3395. [CrossRef] [PubMed]
    [Google Scholar]
  36. Park S. J., Tseng C. P., Gunsalus R. P..( 1995;). Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. . Mol Microbiol 15: 473–482. [CrossRef] [PubMed]
    [Google Scholar]
  37. Polen T., Rittmann D., Wendisch V. F., Sahm H..( 2003;). DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. . Appl Environ Microbiol 69: 1759–1774. [CrossRef] [PubMed]
    [Google Scholar]
  38. Ricke S. C..( 2003;). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. . Poult Sci 82: 632–639. [CrossRef] [PubMed]
    [Google Scholar]
  39. Roe A. J., O'Byrne C., McLaggan D., Booth I. R..( 2002;). Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. . Microbiology 148: 2215–2222. [CrossRef] [PubMed]
    [Google Scholar]
  40. Rosenshine I., Ruschkowski S., Finlay B. B..( 1996;). Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. . Infect Immun 64: 966–973.[PubMed]
    [Google Scholar]
  41. Roy C. C., Kien C. L., Bouthillier L., Levy E..( 2006;). Short-chain fatty acids: ready for prime time?. Nutr Clin Pract 21: 351–366. [CrossRef] [PubMed]
    [Google Scholar]
  42. Schüller S., Phillips A. D..( 2010;). Microaerobic conditions enhance type III secretion and adherence of enterohaemorrhagic Escherichia coli to polarized human intestinal epithelial cells. . Environ Microbiol 12: 2426–2435. [CrossRef] [PubMed]
    [Google Scholar]
  43. Shin R., Suzuki M., Morishita Y..( 2002;). Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. . J Med Microbiol 51: 201–206. [CrossRef] [PubMed]
    [Google Scholar]
  44. Simms A. N., Mobley H. L..( 2008;). PapX, a p fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. . Infect Immun 76: 4833–4841. [CrossRef] [PubMed]
    [Google Scholar]
  45. Stoebel D. M., Free A., Dorman C. J..( 2008;). Anti-silencing: overcoming H-NS-mediated repression of transcription in gram-negative enteric bacteria. . Microbiology 154: 2533–2545. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sun Y., O'Riordan M. X..( 2013;). Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. . Adv Appl Microbiol 85: 93–118. [CrossRef] [PubMed]
    [Google Scholar]
  47. Takao M., Yen H., Tobe T..( 2014;). LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli. . Mol Microbiol 93: 1302–1313. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tobe T., Nakanishi N., Sugimoto N..( 2011;). Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. . Infect Immun 79: 1016–1024. [CrossRef] [PubMed]
    [Google Scholar]
  49. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J. I..( 2009;). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. . Sci Transl Med 1: 6ra14. [CrossRef] [PubMed]
    [Google Scholar]
  50. Van Deun K., Haesebrouck F., Van Immerseel F., Ducatelle R., Pasmans F..( 2008;). Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. . Avian Pathol 37: 379–383. [CrossRef] [PubMed]
    [Google Scholar]
  51. Westenberg D. J., Gunsalus R. P., Ackrell B. A., Sices H., Cecchini G..( 1993;). Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones. . J Biol Chem 268: 815–822.[PubMed]
    [Google Scholar]
  52. Wong J. M., de Souza R., Kendall C. W., Emam A., Jenkins D. J..( 2006;). Colonic health: fermentation and short chain fatty acids. . J Clin Gastroenterol 40: 235–243. [CrossRef] [PubMed]
    [Google Scholar]
  53. Yin X., Feng Y., Wheatcroft R., Chambers J., Gong J., Gyles C. L..( 2011;). Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions. . Can J Vet Res 75: 81–88.[PubMed]
    [Google Scholar]
  54. Zumbrun S. D., Melton-Celsa A. R., Smith M. A., Gilbreath J. J., Merrell D. S., O'Brien A. D..( 2013;). Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. . Proc Natl Acad Sci U S A 110:,E21262133. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000357
Loading
/content/journal/micro/10.1099/mic.0.000357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error