1887

Abstract

Despite its presence in most bacteria, yqgF remains one of only 13 essential genes of unknown function in Escherichia coli. Predictions of YqgF function often derive from sequence similarity to RuvC, the canonical Holliday junction resolvase. To clarify its role, we deleted yqgF from a bacterium where it is not essential, Acinetobacter baylyi ADP1. Loss of yqgF impaired growth and increased the frequency of transformation and allelic replacement (TAR). When E. coli yqgF was inserted in place of its A. baylyi chromosomal orthologue, wild-type growth and TAR were restored. Functional similarities of yqgF in both gamma-proteobacteria were further supported by defective 16S rRNA processing by the A. baylyi mutant, an effect previously shown in E. coli for a temperature-sensitive yqgF allele. However, our data question the validity of deducing YqgF function strictly by comparison to RuvC. A. baylyi studies indicated that YqgF and RuvC can function in opposition to one another. Relative to the wild type, the ΔyqgF mutant had increased TAR frequency and increased resistance to nalidixic acid, a DNA-damaging agent. In contrast, deletion of ruvC decreased TAR frequency and lowered resistance to nalidixic acid. YqgF, but not RuvC, appears to increase bacterial susceptibility to DNA damage, including UV radiation. Nevertheless, the effects of yqgF on growth and TAR frequency were found to depend on amino acids analogous to catalytically required residues of RuvC. This new heterologous system should facilitate future yqgF investigation by exploiting the viability of A. baylyi yqgF mutants. In addition, bioinformatic analysis showed that a non-essential gene immediately upstream of yqgF in A. baylyi and E. coli (yqgE) is similarly positioned in most gamma- and beta-proteobacteria. A small overlap in the coding sequences of these adjacent genes is typical. This conserved genetic arrangement raises the possibility of a functional partnership between yqgE and yqgF.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000355
2016-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1808.html?itemId=/content/journal/micro/10.1099/mic.0.000355&mimeType=html&fmt=ahah

References

  1. Abe K., Obana N., Nakamura K..( 2010;). Effects of depletion of RNA-binding protein Tex on the expression of toxin genes in Clostridium perfringens. . Biosci Biotechnol Biochem 74: 1564–1571. [CrossRef] [PubMed]
    [Google Scholar]
  2. Al Mamun A. A., Lombardo M. J., Shee C., Lisewski A. M., Gonzalez C., Lin D., Nehring R. B., Saint-Ruf C., Gibson J. L. et al.( 2012;). Identity and function of a large gene network underlying mutagenic repair of DNA breaks. . Science 338: 1344–1348. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amor A. J., Castanzo D. T., Delany S. P., Selechnik D. M., van Ooy A., Cameron D. M..( 2015;). The ribosome-associated complex antagonizes prion formation in yeast. . Prion 9: 144–164. [CrossRef] [PubMed]
    [Google Scholar]
  4. Aravind L., Makarova K. S., Koonin E. V..( 2000;). SURVEY AND SUMMARY: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. . Nucleic Acids Res 28: 3417–3432. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H..( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2: 2006–2008. [CrossRef]
    [Google Scholar]
  6. Barik S..( 1996;). Site-directed mutagenesis in vitro by megaprimer PCR. . In In Vitro Mutagenesis Protocols , pp. 203–215. Edited by Anonymous: Springer;.[CrossRef]
    [Google Scholar]
  7. Belland R. J., Nelson D. E., Virok D., Crane D. D., Hogan D., Sturdevant D., Beatty W. L., Caldwell H. D..( 2003;). Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. . Proc Natl Acad Sci U S A 100: 15971–15976. [CrossRef] [PubMed]
    [Google Scholar]
  8. Caspi R., Foerster H., Fulcher C. A., Kaipa P., Krummenacker M., Latendresse M., Paley S., Rhee S. Y., Shearer A. G. et al.( 2008;). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. . Nucleic Acids Res 36: D623–631. [CrossRef] [PubMed]
    [Google Scholar]
  9. Close D., Johnson S. J., Sdano M. A., McDonald S. M., Robinson H., Formosa T., Hill C. P..( 2011;). Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. . J Mol Biol 408: 697–713. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Berardinis V., Vallenet D., Castelli V., Besnard M., Pinet A., Cruaud C., Samair S., Lechaplais C., Gyapay G. et al.( 2008;). A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. . Mol Syst Biol 4: 174. [CrossRef] [PubMed]
    [Google Scholar]
  11. Despalins A., Marsit S., Oberto J..( 2011;). Absynte: a web tool to analyze the evolution of orthologous archaeal and bacterial gene clusters. . Bioinformatics 27: 2905–2906. [CrossRef] [PubMed]
    [Google Scholar]
  12. Elliott K. T., Neidle E. L..( 2011;). Acinetobacter baylyi ADP1: transforming the choice of model organism. . IUBMB Life 63: 1075–1080. [CrossRef] [PubMed]
    [Google Scholar]
  13. Freiberg C., Wieland B., Spaltmann F., Ehlert K., Brötz H., Labischinski H..( 2001;). Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. . J Mol Microbiol Biotechnol 3: 483–489.[PubMed]
    [Google Scholar]
  14. Fuchs T. M., Deppisch H., Scarlato V., Gross R..( 1996;). A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. . J Bacteriol 178: 4445–4452.[PubMed]
    [Google Scholar]
  15. Gerdes S. Y., Scholle M. D., Campbell J. W., Balázsi G., Ravasz E., Daugherty M. D., Somera A. L., Kyrpides N. C., Anderson I. et al.( 2003;). Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. . J Bacteriol 185: 5673–5684.[PubMed] [CrossRef]
    [Google Scholar]
  16. Harms K., de Vries J., Wackernagel W..( 2007;). A double kill gene cassette for the positive selection of transforming non-selective DNA segments in Acinetobacter baylyi BD413. . J Microbiol Methods 69: 107–115. [CrossRef] [PubMed]
    [Google Scholar]
  17. He X., Thornton J., Carmicle-Davis S., McDaniel L. S..( 2006;). Tex, a putative transcriptional accessory factor, is involved in pathogen fitness in Streptococcus pneumoniae. . Microb Pathog 41: 199–206. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hidalgo A. A., Trombert A. N., Castro-Alonso J. C., Santiviago C. A., Tesser B. R., Youderian P., Mora G. C..( 2004;). Insertions of mini-Tn10 transposon T-POP in Salmonella enterica sv. typhi. . Genetics 167: 1069–1077. [CrossRef] [PubMed]
    [Google Scholar]
  19. Horton R. M., Cai Z. L., Ho S. N., Pease L. R..( 1990;). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. . Biotechniques 8: 528–535.[PubMed]
    [Google Scholar]
  20. Humbert O., Dorer M. S., Salama N. R..( 2011;). Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. . Mol Microbiol 79: 387–401. [CrossRef] [PubMed]
    [Google Scholar]
  21. Iwamoto A., Osawa A., Kawai M., Honda H., Yoshida S., Furuya N., Kato J..( 2012;). Mutations in the essential Escherichia coli gene, yqgF, and their effects on transcription. . J Mol Microbiol Biotechnol 22: 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  22. Izhar L., Goldsmith M., Dahan R., Geacintov N., Lloyd R. G., Livneh Z..( 2008;). Analysis of strand transfer and template switching mechanisms of DNA gap repair by homologous recombination in Escherichia coli: predominance of strand transfer. . J Mol Biol 381: 803–809. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jones R. M., Williams P. A..( 2003;). Mutational analysis of the critical bases involved in activation of the AreR-regulated sigma54-dependent promoter in Acinetobacter sp. strain ADP1. . Appl Environ Microbiol 69: 5627–5635.[PubMed] [CrossRef]
    [Google Scholar]
  24. Juhas M., Reuss D. R., Zhu B., Commichau F. M..( 2014;). Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. . Microbiology 160: 2341–2351. [CrossRef] [PubMed]
    [Google Scholar]
  25. Juni E..( 1972;). Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. . J Bacteriol 112: 917–931.[PubMed]
    [Google Scholar]
  26. Juni E., Janik A..( 1969;). Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). . J Bacteriol 98: 281–288.[PubMed]
    [Google Scholar]
  27. Kang J., Blaser M. J..( 2008;). Repair and antirepair DNA helicases in Helicobacter pylori. . J Bacteriol 190: 4218–4224. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kang J., Tavakoli D., Tschumi A., Aras R. A., Blaser M. J..( 2004;). Effect of host species on recG phenotypes in Helicobacter pylori and Escherichia coli. . J Bacteriol 186: 7704–7713. [CrossRef] [PubMed]
    [Google Scholar]
  29. Keseler I. M., Mackie A., Peralta-Gil M., Santos-Zavaleta A., Gama-Castro S., Bonavides-Martínez C., Fulcher C., Huerta A. M., Kothari A. et al.( 2013;). EcoCyc: fusing model organism databases with systems biology. . Nucleic Acids Res 41: D605–612. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kidane D., Ayora S., Sweasy J. B., Graumann P. L., Alonso J. C..( 2012;). The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. . Crit Rev Biochem Mol Biol 47: 531–555. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kumar A., Beloglazova N., Bundalovic-Torma C., Phanse S., Deineko V., Gagarinova A., Musso G., Vlasblom J., Lemak S. et al.( 2016;). Conditional epistatic interaction maps reveal global functional rewiring of genome integrity pathways in Escherichia coli. . Cell Rep 14: 648–661. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kurata T., Nakanishi S., Hashimoto M., Taoka M., Yamazaki Y., Isobe T., Kato J..( 2015;). Novel essential gene Involved in 16S rRNA processing in Escherichia coli. . J Mol Biol 427: 955–965. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lilley D. M., White M. F..( 2000;). Resolving the relationships of resolving enzymes. . Proc Natl Acad Sci U S A 97: 9351–9353.[PubMed] [CrossRef]
    [Google Scholar]
  34. Liu Y., West S. C..( 2004;). Happy Hollidays: 40th anniversary of the Holliday junction. . Nat Rev Mol Cell Biol 5: 937–944. [CrossRef] [PubMed]
    [Google Scholar]
  35. Liu D., Repaka P., Taremi S. S., Wyss D. F..( 2002;). Backbone 1H, 15N and 13C resonance assignments of YqgF, an Escherichia coli protein of unknown structure and function. . J Biomol NMR 23: 159–160.[PubMed] [CrossRef]
    [Google Scholar]
  36. Liu D., Wang Y. S., Wyss D. F..( 2003;). Solution structure of the hypothetical protein YqgF from Escherichia coli reveals an RNAse H fold. . J Biomol NMR 27: 389–392.[PubMed] [CrossRef]
    [Google Scholar]
  37. Majorek K. A., Dunin-Horkawicz S., Steczkiewicz K., Muszewska A., Nowotny M., Ginalski K., Bujnicki J. M..( 2014;). The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. . Nucleic Acids Res 42: 4160–4179. [CrossRef] [PubMed]
    [Google Scholar]
  38. Metzgar D., Bacher J. M., Pezo V., Reader J., Döring V., Schimmel P., Marlière P., de Crécy-Lagard V..( 2004;). Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. . Nucleic Acids Res 32: 5780–5790. [CrossRef] [PubMed]
    [Google Scholar]
  39. Morrison K. L., Weiss G. A..( 2001;). Combinatorial alanine-scanning. . Curr Opin Chem Biol 5: 302–307.[PubMed] [CrossRef]
    [Google Scholar]
  40. Nakamura Y..( 2007;). Acinetobacter sp. ADP1 codon usage table. . http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=62977.
  41. Nautiyal A., Rani P. S., Sharples G. J., Muniyappa K..( 2016;). Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain. . Mol Microbiol 100: 656–674. [CrossRef] [PubMed]
    [Google Scholar]
  42. Neidle E. L., Ornston L. N..( 1986;). Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli. . J Bacteriol 168: 815–820.[PubMed]
    [Google Scholar]
  43. Phadtare S., Inouye M..( 2004;). Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. . J Bacteriol 186: 7007–7014. [CrossRef] [PubMed]
    [Google Scholar]
  44. Ponting C. P..( 2002;). Novel domains and orthologues of eukaryotic transcription elongation factors. . Nucleic Acids Res 30: 3643–3652.[PubMed] [CrossRef]
    [Google Scholar]
  45. Potvin E., Lehoux D. E., Kukavica-Ibrulj I., Richard K. L., Sanschagrin F., Lau G. W., Levesque R. C..( 2003;). In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. . Environ Microbiol 5: 1294–1308.[PubMed] [CrossRef]
    [Google Scholar]
  46. Rice P., Longden I., Bleasby A..( 2000;). EMBOSS: the European molecular biology open software suite. . Trends Genet 16: 276–277.[PubMed] [CrossRef]
    [Google Scholar]
  47. Rocha E. P., Cornet E., Michel B..( 2005;). Comparative and evolutionary analysis of the bacterial homologous recombination systems. . PLoS Genet 1:,e15. [CrossRef] [PubMed]
    [Google Scholar]
  48. Rudolph C. J., Upton A. L., Briggs G. S., Lloyd R. G..( 2010;). Is RecG a general guardian of the bacterial genome?. DNA Repair 9: 210–223. [CrossRef] [PubMed]
    [Google Scholar]
  49. Saito A., Iwasaki H., Ariyoshi M., Morikawa K., Shinagawa H..( 1995;). Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase. . Proc Natl Acad Sci U S A 92: 7470–7474.[CrossRef]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Edited by Anonymous. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  51. Schlictman D., Kubo M., Shankar S., Chakrabarty A. M..( 1995;). Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH. . J Bacteriol 177: 2469–2474.[PubMed]
    [Google Scholar]
  52. Seaton S. C., Elliott K. T., Cuff L. E., Laniohan N. S., Patel P. R., Neidle E. L..( 2012;). Genome-wide selection for increased copy number in Acinetobacter baylyi ADP1: locus and context-dependent variation in gene amplification. . Mol Microbiol 83: 520–535. [CrossRef] [PubMed]
    [Google Scholar]
  53. Shanley M. S., Neidle E. L., Parales R. E., Ornston L. N..( 1986;). Cloning and expression of Acinetobacter calcoaceticus catBCDE genes in Pseudomonas putida and Escherichia coli. . J Bacteriol 165: 557–563.[PubMed]
    [Google Scholar]
  54. Sinha R. P., Häder D..( 2002;). UV-induced DNA damage and repair: a review. . Photochem Photobiol Sci 1: 225–236.[CrossRef]
    [Google Scholar]
  55. Stead M. B., Agrawal A., Bowden K. E., Nasir R., Mohanty B. K., Meagher R. B., Kushner S. R..( 2012;). RNAsnap: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. . Nucleic Acids Res 40:,e156. [CrossRef] [PubMed]
    [Google Scholar]
  56. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A. et al.( 2015;). STRING v10: protein-protein interaction networks, integrated over the tree of life. . Nucleic Acids Res 43: D447–452. [CrossRef] [PubMed]
    [Google Scholar]
  57. UniProt Consortium( 2015;). UniProt: a hub for protein information. . Nucleic Acids Res 43: D204–212. [CrossRef] [PubMed]
    [Google Scholar]
  58. Urbauer J. L., Cowley A. B., Broussard H. P., Niedermaier H. T., Bieber Urbauer R. J..( 2015;). Solution structure and properties of AlgH from Pseudomonas aeruginosa. . Proteins 83: 1137–1150. [CrossRef] [PubMed]
    [Google Scholar]
  59. Vandeyar M. A., Weiner M. P., Hutton C. J., Batt C. A..( 1988;). A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. . Gene 65: 129–133.[PubMed] [CrossRef]
    [Google Scholar]
  60. Vaneechoutte M., Young D. M., Ornston L. N., De Baere T., Nemec A., Van Der Reijden T., Carr E., Tjernberg I., Dijkshoorn L..( 2006;). Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. . Appl Environ Microbiol 72: 932–936. [CrossRef] [PubMed]
    [Google Scholar]
  61. Veeranagouda Y., Husain F., Tenorio E. L., Wexler H. M..( 2014;). Identification of genes required for the survival of B. fragilis using massive parallel sequencing of a saturated transposon mutant library. . BMC Genomics 15: 15–429. [CrossRef] [PubMed]
    [Google Scholar]
  62. Whiteside M. D., Winsor G. L., Laird M. R., Brinkman F. S..( 2013;). OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. . Nucleic Acids Res 41: D366–376. [CrossRef] [PubMed]
    [Google Scholar]
  63. Wiegand I., Hilpert K., Hancock R. E..( 2008;). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. . Nat Protoc 3: 163–175. [CrossRef] [PubMed]
    [Google Scholar]
  64. Wyatt H. D., West S. C..( 2014;). Holliday junction resolvases. . Cold Spring Harb Perspect Biol 6: a023192. [CrossRef] [PubMed]
    [Google Scholar]
  65. Yanisch-Perron C., Vieira J., Messing J..( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. . Gene 33: 103–119.[PubMed] [CrossRef]
    [Google Scholar]
  66. Yuan M., Chen M., Zhang W., Lu W., Wang J., Yang M., Zhao P., Tang R., Li X. et al.( 2012;). Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. . PLoS One 7:,e34458. [CrossRef] [PubMed]
    [Google Scholar]
  67. Zalacain M., Biswas S., Ingraham K. A., Ambrad J., Bryant A., Chalker A. F., Iordanescu S., Fan J., Fan F. et al.( 2003;). A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. . J Mol Microbiol Biotechnol 6: 109–126.[PubMed] [CrossRef]
    [Google Scholar]
  68. Zar J. H..( 1999;). Biostatistical Analysis, , 4th edn.. New Jersey:: Prentice Hall;.
    [Google Scholar]
  69. Zhang X. S., Blaser M. J..( 2012;). DprB facilitates inter- and intragenomic recombination in Helicobacter pylori. . J Bacteriol 194: 3891–3903. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000355
Loading
/content/journal/micro/10.1099/mic.0.000355
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error