1887

Abstract

Bacterial inactivation by 405 nm light is accredited to the photoexcitation of intracellular porphyrin molecules resulting in energy transfer and the generation of reactive oxygen species that impart cellular oxidative damage. The specific mechanism of cellular damage, however, is not fully understood. Previous work has suggested that destruction of nucleic acids may be responsible for inactivation; however, microscopic imaging has suggested membrane damage as a major constituent of cellular inactivation. This study investigates the membrane integrity of and exposed to 405 nm light. Results indicated membrane damage to both species, with loss of salt and bile tolerance by and , respectively, consistent with reduced membrane integrity. Increased nucleic acid release was also demonstrated in 405 nm light-exposed cells, with up to 50 % increase in DNA concentration into the extracellular media in the case of both organisms. SYTOX green fluorometric analysis, however, demonstrated contradictory results between the two test species. With , increasing permeation of SYTOX green was observed following increased exposure, with >500 % increase in fluorescence, whereas no increase was observed with . Overall, this study has provided good evidence that 405 nm light exposure causes loss of bacterial membrane integrity in , but the results with are more difficult to explain. Further work is required to gain greater understanding of the inactivation mechanism in different bacterial species, as there are likely to be other targets within the cell that are also impaired by the oxidative damage from photo-generated reactive oxygen species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000350
2016-09-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1680.html?itemId=/content/journal/micro/10.1099/mic.0.000350&mimeType=html&fmt=ahah

References

  1. Bache S. E., Maclean M., MacGregor S. J., Anderson J. G., Gettinby G., Coia J. E., Taggart I.. 2012; Clinical studies of the HINS-light environmental decontamination system for continuous disinfection in the burn unit inpatient and outpatient settings. Burns38:69–76 [CrossRef][PubMed]
    [Google Scholar]
  2. Bolton J. R., Linden K. G.. 2003; Standardization of methods for fluence (UV dose) determination in bench scale UV experiments ent settings. J Environ Eng129:209–215 [CrossRef]
    [Google Scholar]
  3. Breeuwer P., Abee T.. 2000; Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol55:193–200 [CrossRef][PubMed]
    [Google Scholar]
  4. Carson C. F., Mee B. J., Riley T. V.. 2002; Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother46:1914–1920 [CrossRef][PubMed]
    [Google Scholar]
  5. Clauditz A., Resch A., Wieland K. P., Peschel A., Götz F.. 2006; Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun74:4950–4953 [CrossRef][PubMed]
    [Google Scholar]
  6. Dai T., Gupta A., Murray C. K., Vrahas M. S., Tegos G. P., Hamblin M. R.. 2012; Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?. Drug Resist Updat15:223–236 [CrossRef][PubMed]
    [Google Scholar]
  7. Dai T., Gupta A., Huang Y.-Y., Sherwood M. E., Murray C. K., Vrahas M. S., Kielian T., Hamblin M. R.. 2013a; Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg31:531–538 [CrossRef][PubMed]
    [Google Scholar]
  8. Dai T., Gupta A., Huang Y.-Y., Yin R., Murray C. K., Vrahas M. S., Sherwood M. E., Tegos G. P., Hamblin M. R.. 2013b; Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother57:1238–1245 [CrossRef][PubMed]
    [Google Scholar]
  9. Dancer S. J.. 2014; Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev27:665–690 [CrossRef][PubMed]
    [Google Scholar]
  10. Demidova T. N., Hamblin M. R.. 2004; Photodynamic therapy targeted to pathogens. Int J Immunopath Pharmacol17:245–254
    [Google Scholar]
  11. Endarko E., Maclean M., Timoshkin I. V., MacGregor S. J., Anderson J. G.. 2012; High-intensity 405 nm light inactivation of Listeria monocytogenes . Photochem Photobiol88:1280–1286 [CrossRef][PubMed]
    [Google Scholar]
  12. Enwemeka C. S., Williams D., Hollosi S., Yens D., Enwemeka S. K.. 2008; Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro . Lasers Surg Med40:734–737 [CrossRef][PubMed]
    [Google Scholar]
  13. Gilbert P.. 1984; The revival of microorganisms sublethally injured by chemical inhibitors. In The Revival of Injured Microbes , pp.175–197 Edited by Andrews M. H. E., Russell A. D.. London, UK: Academic Press;
    [Google Scholar]
  14. Guffey J. S., Wilborn J.. 2006; In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg24:684–688 [CrossRef][PubMed]
    [Google Scholar]
  15. Hamblin M. R., Hasan T.. 2004; Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem Photobiol Sci3:436–450 [CrossRef][PubMed]
    [Google Scholar]
  16. Hugo W. B., Longworth R.. 1964; Some aspects of the mode of action of chlorhexidine. J Pharm Pharmacol16:655–662 [CrossRef]
    [Google Scholar]
  17. Lebaron P., Catala P., Parthuisot N.. 1998; Effectiveness of SYTOX green stain for bacterial viability assessment. Appl Environ Microbiol64:2697–2700[PubMed]
    [Google Scholar]
  18. Luksiene Z.. 2009; Photosensitisation for food safety. Chemine Technologija53:62–65
    [Google Scholar]
  19. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A.. 2008; The role of oxygen in the visible light inactivation and wavelength sensitivity of Staphylococcus aureus . J Photochem Photobiol B92:180–184[CrossRef]
    [Google Scholar]
  20. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A.. 2009; Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol75:1932–1937 [CrossRef][PubMed]
    [Google Scholar]
  21. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A., Coia J. E., Hamilton K., Taggart I., Watson S. B., Thakker B., Gettinby G.. 2010; Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. J Hosp Infect76:247–251 [CrossRef][PubMed]
    [Google Scholar]
  22. Maclean M., Murdoch L. E., MacGregor S. J., Anderson J. G.. 2013; Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol89:120–126 [CrossRef][PubMed]
    [Google Scholar]
  23. Maclean M., McKenzie K., Anderson J. G., Gettinby G., MacGregor S. J.. 2015; 405 nm Light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect88:1–11 [CrossRef][PubMed]
    [Google Scholar]
  24. Malik Z., Ladan H., Nitzan Y.. 1992; Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B14:262–266 [CrossRef][PubMed]
    [Google Scholar]
  25. McDonald R., Macgregor S. J., Anderson J. G., Maclean M., Grant M. H.. 2011; Effect of 405-nm high-intensity narrow-spectrum light on fibroblast-populated collagen lattices: an in vitro model of wound healing. J Biomed Opt16:048003 [CrossRef][PubMed]
    [Google Scholar]
  26. McKenzie K., Maclean M., Timoshkin I. V., Endarko E., MacGregor S. J., Anderson J. G.. 2013; Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: potential application for biofilm decontamination. Photochem Photobiol89:927–935 [CrossRef][PubMed]
    [Google Scholar]
  27. McKenzie K., Maclean M., Timoshkin I. V., MacGregor S. J., Anderson J. G.. 2014; Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int J Food Microbiol170:91–98 [CrossRef][PubMed]
    [Google Scholar]
  28. Murdoch L. E., Maclean M., Endarko E., MacGregor S. J., Anderson J. G.. 2012; Bactericidal effects of 405-nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria and Mycobacterium species in liquid suspensions and on exposed surfaces. Scientific World Journal2012:137805[CrossRef]
    [Google Scholar]
  29. Nair S., Finkel S. E.. 2004; Dps protects cells against multiple stresses during stationary phase. J Bacteriol186:4192–4198 [CrossRef][PubMed]
    [Google Scholar]
  30. Nitzan Y., Salmon-Divon M., Shporen E., Malik Z.. 2004; ALA induced photodynamic effects on Gram positive and negative bacteria. Photochem Photobiol Sci3:430–435 [CrossRef][PubMed]
    [Google Scholar]
  31. Pelle E., Mammone T., Marenus K., Maes D. 2003; Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger. J Invest Dermatol121:177–183 [CrossRef][PubMed]
    [Google Scholar]
  32. Pelz A., Wieland K. P., Putzbach K., Hentschel P., Albert K., Götz F.. 2005; Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus . J Biol Chem280:32493–32498 [CrossRef][PubMed]
    [Google Scholar]
  33. Ramakrishnan P., Maclean M., MacGregor S. J., Anderson J. G., Grant M. H.. 2016; Cytotoxic responses to 405 nm light exposure in mammalian and bacterial cells: involvement of reactive oxygen species. Toxicol In Vitro33:54–62 [CrossRef][PubMed]
    [Google Scholar]
  34. Roth B. L., Poot M., Yue S. T., Millard P. J.. 1997; Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol63:2421–2431[PubMed]
    [Google Scholar]
  35. Sakai K., Koyama N., Fukuda T., Mori Y., Onaka H., Tomoda H.. 2012; Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus . Biol Pharm Bull35:48–53 [CrossRef][PubMed]
    [Google Scholar]
  36. Tashyreva D., Elster J., Billi D.. 2013; A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes. PLoS One8:e55283 [CrossRef][PubMed]
    [Google Scholar]
  37. Ukuku D. O., Yamamoto K., Bari M., Mukhopadaya S., Juneja V., Kawamoto S.. 2013; Membrane damage and viability loss of E. coli and Salmonella in apple juice treated with high hydrostatic pressure and thermal time disks. J Food Proc Tech54:1–6
    [Google Scholar]
  38. Weichart D., McDougald D., Jacobs D., Kjelleberg S.. 1997; In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus . Appl Environ Microbiol63:2754–2758[PubMed]
    [Google Scholar]
  39. Zhang Y., Zhu Y., Gupta A., Huang Y., Murray C. K., Vrahas M. A., Sherwood M. E., Baer D. G., Hamblin M. R., Dai T.. 2014; Antimicrobial blue light therapy for multi-drug resistant Acinetobacter baumanni infection in mice: implications for prophylaxis and treatment of combat related infection. J Infect Dis17:122–127
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000350
Loading
/content/journal/micro/10.1099/mic.0.000350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error